Effect of Relationship Between β-Catenin and Extracellular Matrix on Progression of Oral Epithelial Dysplasia to Oral Squamous Cell Carcinoma

Authors

DOI:

https://doi.org/10.15517/q2c1s711

Keywords:

β-Catenin; Elastic fibers; Collagen; Oral epithelial dysplasia; Oral squamous cell carcinoma.

Abstract

This study aimed to explore roles of β-catenin, collagen&elastic fibers in progression of Oral Epithelial Dysplasia (OED) to oral squamous cell carcinoma (OSCC). Sixty paraffin wax blocks of oral mucosa were divided into: control (Group I), mild OED (Group II), severe OED (Group III), well differentiated SCC (Group IV), moderately differentiated SCC (Group V), poorly differentiated SCC (Group VI). The sections underwent staining using hematoxylin and eosin, histochemical stains and β-catenin immunostaining.  Group I revealed normal gingival tissue. Group II showed some basal and prickle cells with pleomorphic nuclei. Group III illustrated poorly demarcated cell membrane. Group IV showed keratinized epithelial islands. Group V was devoid of keratin pearls. Group VI showed dispersed epithelial cells. β-catenin-immunoreactivity was; strong membranous in Group I, moderate membranous, cytoplasmic and nuclear in Groups II&III, moderate nuclear and cytoplasmic in Group IV but strong in Groups V&VI. Collagen fibers were closely packed in Groups I&II, loosely packed in Groups III&IV, dispersed in Groups V&VI. Elastic fibers in Group I were apparently few & thin, abundant in Group II, numerous in Group III, short in Groups IV&V and thick in Group VI. β-catenin and elastic fibers were upregulated meanwhile collagen formation was downregulated towards progression from mild OED to poorly differentiated SCC.

References

Lala M., Chirovsky D., Cheng J.D., Mayawala K. Clinical outcomes with therapies for previously treated recurrent/metastatic head-and-neck squamous cell carcinoma (R/M HNSCC). a systematic literature review. Oral Oncol. 2018; 84: 108-120. DOI: https://doi.org/10.1016/j.oraloncology.2018.07.005

Siegel R.L., Miller K.D., Jemal A. Cancer statistics.CA Cancer J Clin. 2019; 69 (1): 7-34. DOI: https://doi.org/10.3322/caac.21551

Warnakulasuriya S., Johnson N., van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007; 36: 575 580. DOI: https://doi.org/10.1111/j.1600-0714.2007.00582.x

Warnakulasuriya S., Reibel J., Bouquot J., Dabelsteen E. Oral epithelial dysplasia classification systems: Predictive value, utility, weaknesses and scope for improvement. J. Oral. Pathol. Med. 2008; 37: 127-133. DOI: https://doi.org/10.1111/j.1600-0714.2007.00584.x

Fleskens S., Slootweg PJ. Grading systems in head and neck dysplasia: Their prognostic value, weaknesses and utility. Head Neck Oncol. 2009; 1: 1-11. DOI: https://doi.org/10.1186/1758-3284-1-11

El-Naggar A., Chan J., Takata T., Grandis J., Slootweg P.J. The fourth edition of the head and neck World Health Organization blue book Editors’ perspectives. Hum. Pathol. 2017; 66: 10-12. DOI: https://doi.org/10.1016/j.humpath.2017.05.014

Logan C., Nusse R. The wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Boil. 2004; 20: 781-810. DOI: https://doi.org/10.1146/annurev.cellbio.20.010403.113126

Nusse R. Wnt signaling. Cold Spring Harb. Perspect. Boil. 2012; 4: a011163. DOI: https://doi.org/10.1101/cshperspect.a011163

Morin P., Sparks A., Korinek V., Barker N., Clevers H., Vogelstein B., Kinzler K. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997; 275: 1787-1790. DOI: https://doi.org/10.1126/science.275.5307.1787

Balint K., Xiao M., Pinnix C., Soma A., Veres I., Juhasz I., Brown E., Capobianco A., Herlyn M., Liu Z. Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J. Clin. Investig. 2005; 115: 3166-3176. DOI: https://doi.org/10.1172/JCI25001

Khalil S., Tan G., Giri D., Zhou X., Howe L. Activation status of Wnt/ß-catenin signaling in normal and neoplastic breast tissues: Relationship to HER2/NEU expression in human and mouse. PLoS ONE. 2012; 7: e33421. DOI: https://doi.org/10.1371/journal.pone.0033421

Santoro A., Pannone G., Papagerakis S., McGu H., Cafarelli B., Lepore S., De Maria S., Rubini C., Mattoni M., Staibano S. Beta-catenin and epithelial tumors: A study based on 374 oropharyngeal cancers. BioMed Res. Int. 2014; 2014: 1-13. DOI: https://doi.org/10.1155/2014/948264

Zhan P., Zhang B., Xi G., Wu Y., Liu H., Liu Y., Xu W., Zhu Q., Cai F., Zhou Z. PRC1 contributes to tumorigenesis of lung adenocarcinoma in association with the Wnt/β - catenin signalingpathway. Mol. Cancer. 2017; 16: 108. DOI: https://doi.org/10.1186/s12943-017-0682-z

Sato K., Okazaki Y., Tonogi M., Tanaka Y., Yamane G. Expression of beta-catenin in rat oral epithelial dysplasia induced by 4-nitroquinoline 1-oxide. Oral Oncol. 2002; 38: 772-778. DOI: https://doi.org/10.1016/S1368-8375(02)00044-1

Ravindran G., Devaraj H. Aberrant expression of beta-catenin and its association with DeltaNp63, Notch-1, and clinicopathological factors in oral squamous cell carcinoma. Clin. Oral. Investig. 2012; 16: 1275-1288. DOI: https://doi.org/10.1007/s00784-011-0605-0

Kaur J., Sawhney M., DattaGupta S., Shukla N., Srivastava A., Walfish P., Ralhan R. Clinical significance of altered expression of beta-catenin and E-cadherin in oral dysplasia and cancer: Potential link with ALCAM expression. PLoS ONE. 2013; 8: e67361. DOI: https://doi.org/10.1371/journal.pone.0067361

Reyes M., Rojas-Alcayaga G., Maturana A., Aitken J., Rojas C., Ortega A. Increased nuclear beta-catenin expression in oral potentially malignant lesions: A marker of epithelial dysplasia. Med. Oral. Patol. Oral. Cir. Bucal. 2015; 20: 540. DOI: https://doi.org/10.4317/medoral.20341

Marimuthu M., Andiappan M., Wahab A., Muthusekhar M., Balakrishnan A., Shanmugam S.C. Wnt pathway gene expression and their clinical correlation in oral squamous cell carcinoma. Indian J. Dent. Res. 2018; 29: 291-297. DOI: https://doi.org/10.4103/ijdr.IJDR_375_17

Willert K., Nusse R. Wnt Proteins. Cold Spring Harb. Perspect. Boil. 2012; 4: a007864. DOI: https://doi.org/10.1101/cshperspect.a007864

Cruciat C., Niehrs C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb. Perspect. Boil. 2012; 5: a015081. DOI: https://doi.org/10.1101/cshperspect.a015081

Liu T., Zho L., Yang K., Iwasawa K., Kadekaro A., Takebe T., Andl T., Zhang Y. The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts. Signal Transduction and Targeted Therapy. 2019; 4: 63-78. DOI: https://doi.org/10.1038/s41392-019-0100-7

Lu P., Weaver V., Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012; 196: 395-406. DOI: https://doi.org/10.1083/jcb.201102147

Chen P., Cescon M., Bonaldo P. Collagen VI in cancer and its biological mechanisms. Trends Mol Med. 2013; 19: 410-417. DOI: https://doi.org/10.1016/j.molmed.2013.04.001

Walker C., Mojares E., Del Río H. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018; 19: 3028. DOI: https://doi.org/10.3390/ijms19103028

Ricard-Blum, S. The collagen family. Cold Spring Harb Perspect Biol. 2011; 3:a004978. DOI: https://doi.org/10.1101/cshperspect.a004978

Sun Q, Zhang B, Hu Q. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics. 2018; 8: 5072-5087. DOI: https://doi.org/10.7150/thno.26546

Baglieri J., Brenner D., Kisseleva T. The role of fibrosis and liver associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int J Mol Sci. 2019; 20: 1723. DOI: https://doi.org/10.3390/ijms20071723

Myllyharju J., Kivirikko K. Collagens and collagen-related diseases.Ann Med. 2001; 33: 7-21. DOI: https://doi.org/10.3109/07853890109002055

Badylak S. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002; 13: 377-383. DOI: https://doi.org/10.1016/S1084952102000940

Swinehart I., Badylak S. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn. 2016; 245: 351-360. DOI: https://doi.org/10.1002/dvdy.24379

El Deeb M., Rabea A.A. Therapeutic Effect of Curcumin, Ginger and Tamarind on Oral and Paraoral tissues: Histological Overview. Future Dental Journal. 2023; 9: 1-9. DOI: https://doi.org/10.54623/fdj.9011

Xu S., Xu H., Wang W., Li S., Li H., Li T., Zhang W., Yu X., Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019;17: 309-331. DOI: https://doi.org/10.1186/s12967-019-2058-1

Kielty C., Sheratt M., Shuttleworth C. Elastic fibres. J Cell Sci. 2002; 115: 2817-2828. DOI: https://doi.org/10.1242/jcs.115.14.2817

Uitto J. Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol. 1979; 72: 1-10. DOI: https://doi.org/10.1111/1523-1747.ep12530093

Kardam P., Mehendiratta M., Rehani S., Kumra M., Sahay K., Jain K. Stromal fibers in oral squamous cell carcinoma: a possible new prognostic indicator? J Oral Maxillofac Pathol. 2016; 20: 405-412. DOI: https://doi.org/10.4103/0973-029X.190913

Clark A., Vignjevic D. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 2015; 36: 13-22. DOI: https://doi.org/10.1016/j.ceb.2015.06.004

Khan S., Hashmi S., Vij H. Histopathological Evaluation of Connective Tissue Stroma in Oral Squamous Cell Carcinoma. A Histochemical study BrJ Med Health Res. 2020; 7 (06): 95-106. https://pubmed.ncbi.nlm.nih.gov/12082143/ DOI: https://doi.org/10.46624/bjmhr.2020.v7.i6.007

Shredah M., El-Sakhawy M. Immunohistochemical expression of activated caspase-3 in the parotid salivary glands of rats after long administration of Myristica fragrans. International Journal of Advanced Research. 2014; 2 (12): 493-499.

Kim T., Lee J., Baek J., Lee J., Yang X., Taketo M., Jiang R., Cho E. Constitutive stabilization of β-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem. Biophys. Res. Commun. 2011; 412: 549-555. DOI: https://doi.org/10.1016/j.bbrc.2011.07.116

Rajabi P., Heydarpoor M., Maghsoudi A., Mohaghegh F., Mobarakeh M. The study for diagnostic value of β-catenin immunohistochemistry marker in distinction of aggressive and non aggressive basal cell carcinoma. Iran J. Pathol. 2019; 14 (1): 52-60. DOI: https://doi.org/10.30699/ijp.14.1.52

Melis M., Carpino F., Di Tondo U. Techniques in pathological anatomy: autopsies, photon microscopy, histology, electron microscopy, cytology, cytogenetics: cytopathological diagnostics. 1989; (ed. 19). (Chapter 16) p 491.

Bancroft J., Gamble M. Theory and practice of Histological Techniques, Churchill Livingstone. New York. 2002; (P 63-84).

Deodhar K., Tapp E., Scheuer P. Orcein staining of Hepatitis B Antigen in paraffin sections of Liver Biopsies. Journal of Clinical Pathology. 1975; 28: 66-70. DOI: https://doi.org/10.1136/jcp.28.1.66

Salaspuro M., Sipponen P. Demonstration of an intracellular copper-binding protein by Orcein staining in long-standing cholestatic liver diseases. Gut. 1976;17: 787-790. DOI: https://doi.org/10.1136/gut.17.10.787

Speight P.M. Update on oral epithelial dysplasia and progression to cancer. Head Neck Pathol. 2007; 1: 61-66. DOI: https://doi.org/10.1007/s12105-007-0014-5

Voronkov A., Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr. Pharm. Des. 2013; 19: 634-664. DOI: https://doi.org/10.2174/138161213804581837

Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008; 4:68-75. doi: 10.4161/org.4.2.5851. DOI: https://doi.org/10.4161/org.4.2.5851

Xiao C., Wang L., Zhu L., Zhang C., Zhou J. Secreted frizzled-related protein 2 is epigenetically silenced and functions as a tumor suppressor in oral squamous cell carcinoma. Mol. Med. Rep. 2014; 10: 2293-2298. DOI: https://doi.org/10.3892/mmr.2014.2542

Arun Gopinathan P., Kokila G., Jyothi M., Ananjan C., Pradeep L., Humaira S. Study of collagen birefringence in different grades of oral squamous cell carcinoma using picrosirius red and polarized light microscopy. Scientifica (Cairo). 2015; 2015:1-7. DOI: https://doi.org/10.1155/2015/802980

Lapis K., Tímár J. Role of elastin matrix interactions in tumor progression. Semin Cancer Biol. 2002; 12: 209-217. DOI: https://doi.org/10.1016/S1044-579X(02)00024-X

Sabnis S., Kulkarni M., Shinde S., Mani A. Morphological Changes Of Extracellular Matrix In Different Histopathological Grades Of Oral Squamous Cell Carcinoma. Annals of R.S.C.B. 2020; 24: 785-800.

Gobin E., Bagwell K., Wagner J., Mysona D., Sandirasegarane S., Smith N., Bai S., Sharma A., Schleifer R., She J.X. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer. 2019; 19; 581. DOI: https://doi.org/10.1186/s12885-019-5768-0

Jose J., Heera R., Cherian L., Beena V., Paul S., Arun T.J. Evaluation of Connective Tissue Changes in Different Histological Grades of Oral Squamous Cell Carcinoma: A Histochemical Study. Oral & Maxillofacial Pathology Journal. 2023; 14: 12-17.

El-Kammar H., Afifi N.S., AbdulKhalik D. Role of Alpha Smooth Muscle Actin in Oral Squamous Cell Carcinoma Progression. EDJ. 2019; 65: 2387-2396. DOI: https://doi.org/10.21608/edj.2019.72277

Aziz N.C., Alahmad B.E., Kashmoola M.A., Lestari W., Mokhtar K.I., Rosdy N.M. Goniothalamus umbrosus Induces Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell Line. Journal of International Dental and Medical Research. 2024; 17: 996-999.

Published

2025-07-11