Efecto de la relación entre la Matriz Extracelular y β-Catenina en la progresión de la Displasia Oral Epitelial a Carcinoma Oral de Células Escamosas

Autores/as

Palabras clave:

β-Catenina; Fibras elásticas; Colageno; Displasia epitelia 0ral; Carcinoma oral de células escamosas.

Resumen

El objetivo del presente estudio es explorar el rol de β-catenina, las fibras elásticas y de colágeno en la progresión de la Displasia Oral Epitelial (DOE) hacia el Carcinoma oral de células escamosas (COCE). Se utilizaron seis muestras de mucosa oral, montados en bloques de parafina, los cuales se dividieron en: (Grupo I) control,  (Grupo II) medio DOE, (Grupo III) DOE severo, (Grupo IV) COCE bien diferenciado, (Grupo V) COCE moderadamente diferenciado, (Grupo VI) COCE poco diferenciado. Las muestras se les realizó análisis histológico con hematoxilina-eosina, y análisis de inmunohistoquímica con marcadores para β-catenina. El Grupo I mostró tejido gingival normal. El Grupo II presentó algunas células basales y del estrato espinoso con núcleos pleomórficos. El Grupo III evidenció membranas celulares mal delimitadas. El Grupo IV mostró islas de epitelio queratinizadas. El Grupo V carecía de perlas de queratina. El Grupo VI presentó células epiteliales dispersas. La inmunorreactividad para β-catenina se observó intensa a nivel de la membrana en el Grupo I; localización moderada a nivel de membrana, citoplasma y núcleo en los Grupos II y III; en el Grupo IV localización moderada a nivel de núcleo y citoplasma, pero intensa en los Grupos V y VI. Las fibras colágenas se observaron densamente compactadas en los Grupos I y II, laxamente organizadas en los Grupos III y IV, y dispersas en los Grupos V y VI. Las fibras elásticas fueron escasas y delgadas en el Grupo I, abundantes en el Grupo II, numerosas en el Grupo III, cortas en los Grupos IV y V, y gruesas en el Grupo VI. La expresión de β-catenina y de las fibras elásticas se encontró aumentada, mientras que la formación de colágeno se observó disminuida a medida que progresaba la lesión desde una displasia epitelial oral (DEO) leve hasta un carcinoma escamoso poco diferenciado.

Referencias

Lala M., Chirovsky D., Cheng J.D., Mayawala K. Clinical outcomes with therapies for previously treated recurrent/metastatic head-and-neck squamous cell carcinoma (R/M HNSCC). a systematic literature review. Oral Oncol. 2018; 84: 108-120.

Siegel R.L., Miller K.D., Jemal A. Cancer statistics.CA Cancer J Clin. 2019; 69 (1): 7-34.

Warnakulasuriya S., Johnson N., van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007; 36: 575 580.

Warnakulasuriya S., Reibel J., Bouquot J., Dabelsteen E. Oral epithelial dysplasia classification systems: Predictive value, utility, weaknesses and scope for improvement. J. Oral. Pathol. Med. 2008; 37: 127-133.

Fleskens S., Slootweg PJ. Grading systems in head and neck dysplasia: Their prognostic value, weaknesses and utility. Head Neck Oncol. 2009; 1: 1-11.

El-Naggar A., Chan J., Takata T., Grandis J., Slootweg P.J. The fourth edition of the head and neck World Health Organization blue book Editors’ perspectives. Hum. Pathol. 2017; 66: 10-12.

Logan C., Nusse R. The wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Boil. 2004; 20: 781-810.

Nusse R. Wnt signaling. Cold Spring Harb. Perspect. Boil. 2012; 4: a011163.

Morin P., Sparks A., Korinek V., Barker N., Clevers H., Vogelstein B., Kinzler K. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997; 275: 1787-1790.

Balint K., Xiao M., Pinnix C., Soma A., Veres I., Juhasz I., Brown E., Capobianco A., Herlyn M., Liu Z. Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J. Clin. Investig. 2005; 115: 3166-3176.

Khalil S., Tan G., Giri D., Zhou X., Howe L. Activation status of Wnt/ß-catenin signaling in normal and neoplastic breast tissues: Relationship to HER2/NEU expression in human and mouse. PLoS ONE. 2012; 7: e33421.

Santoro A., Pannone G., Papagerakis S., McGu H., Cafarelli B., Lepore S., De Maria S., Rubini C., Mattoni M., Staibano S. Beta-catenin and epithelial tumors: A study based on 374 oropharyngeal cancers. BioMed Res. Int. 2014; 2014: 1-13.

Zhan P., Zhang B., Xi G., Wu Y., Liu H., Liu Y., Xu W., Zhu Q., Cai F., Zhou Z. PRC1 contributes to tumorigenesis of lung adenocarcinoma in association with the Wnt/β - catenin signalingpathway. Mol. Cancer. 2017; 16: 108.

Sato K., Okazaki Y., Tonogi M., Tanaka Y., Yamane G. Expression of beta-catenin in rat oral epithelial dysplasia induced by 4-nitroquinoline 1-oxide. Oral Oncol. 2002; 38: 772-778.

Ravindran G., Devaraj H. Aberrant expression of beta-catenin and its association with DeltaNp63, Notch-1, and clinicopathological factors in oral squamous cell carcinoma. Clin. Oral. Investig. 2012; 16: 1275-1288.

Kaur J., Sawhney M., DattaGupta S., Shukla N., Srivastava A., Walfish P., Ralhan R. Clinical significance of altered expression of beta-catenin and E-cadherin in oral dysplasia and cancer: Potential link with ALCAM expression. PLoS ONE. 2013; 8: e67361.

Reyes M., Rojas-Alcayaga G., Maturana A., Aitken J., Rojas C., Ortega A. Increased nuclear beta-catenin expression in oral potentially malignant lesions: A marker of epithelial dysplasia. Med. Oral. Patol. Oral. Cir. Bucal. 2015; 20: 540.

Marimuthu M., Andiappan M., Wahab A., Muthusekhar M., Balakrishnan A., Shanmugam S.C. Wnt pathway gene expression and their clinical correlation in oral squamous cell carcinoma. Indian J. Dent. Res. 2018; 29: 291-297.

Willert K., Nusse R. Wnt Proteins. Cold Spring Harb. Perspect. Boil. 2012; 4: a007864.

Cruciat C., Niehrs C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb. Perspect. Boil. 2012; 5: a015081.

Liu T., Zho L., Yang K., Iwasawa K., Kadekaro A., Takebe T., Andl T., Zhang Y. The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts. Signal Transduction and Targeted Therapy. 2019; 4: 63-78.

Lu P., Weaver V., Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012; 196: 395-406.

Chen P., Cescon M., Bonaldo P. Collagen VI in cancer and its biological mechanisms. Trends Mol Med. 2013; 19: 410-417.

Walker C., Mojares E., Del Río H. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018; 19: 3028.

Ricard-Blum, S. The collagen family. Cold Spring Harb Perspect Biol. 2011; 3:a004978.

Sun Q, Zhang B, Hu Q. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics. 2018; 8: 5072-5087.

Baglieri J., Brenner D., Kisseleva T. The role of fibrosis and liver associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int J Mol Sci. 2019; 20: 1723.

Myllyharju J., Kivirikko K. Collagens and collagen-related diseases.Ann Med. 2001; 33: 7-21.

Badylak S. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002; 13: 377-383.

Swinehart I., Badylak S. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn. 2016; 245: 351-360.

El Deeb M., Rabea A.A. Therapeutic Effect of Curcumin, Ginger and Tamarind on Oral and Paraoral tissues: Histological Overview. Future Dental Journal. 2023; 9: 1-9.

Xu S., Xu H., Wang W., Li S., Li H., Li T., Zhang W., Yu X., Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019;17: 309-331.

Kielty C., Sheratt M., Shuttleworth C. Elastic fibres. J Cell Sci. 2002; 115: 2817-2828.

Uitto J. Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol. 1979; 72: 1-10.

Kardam P., Mehendiratta M., Rehani S., Kumra M., Sahay K., Jain K. Stromal fibers in oral squamous cell carcinoma: a possible new prognostic indicator? J Oral Maxillofac Pathol. 2016; 20: 405-412.

Clark A., Vignjevic D. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 2015; 36: 13-22.

Khan S., Hashmi S., Vij H. Histopathological Evaluation of Connective Tissue Stroma in Oral Squamous Cell Carcinoma. A Histochemical study BrJ Med Health Res. 2020; 7 (06): 95-106. https://pubmed.ncbi.nlm.nih.gov/12082143/

Shredah M., El-Sakhawy M. Immunohistochemical expression of activated caspase-3 in the parotid salivary glands of rats after long administration of Myristica fragrans. International Journal of Advanced Research. 2014; 2 (12): 493-499.

Kim T., Lee J., Baek J., Lee J., Yang X., Taketo M., Jiang R., Cho E. Constitutive stabilization of β-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem. Biophys. Res. Commun. 2011; 412: 549-555.

Rajabi P., Heydarpoor M., Maghsoudi A., Mohaghegh F., Mobarakeh M. The study for diagnostic value of β-catenin immunohistochemistry marker in distinction of aggressive and non aggressive basal cell carcinoma. Iran J. Pathol. 2019; 14 (1): 52-60.

Melis M., Carpino F., Di Tondo U. Techniques in pathological anatomy: autopsies, photon microscopy, histology, electron microscopy, cytology, cytogenetics: cytopathological diagnostics. 1989; (ed. 19). (Chapter 16) p 491.

Bancroft J., Gamble M. Theory and practice of Histological Techniques, Churchill Livingstone. New York. 2002; (P 63-84).

Deodhar K., Tapp E., Scheuer P. Orcein staining of Hepatitis B Antigen in paraffin sections of Liver Biopsies. Journal of Clinical Pathology. 1975; 28: 66-70.

Salaspuro M., Sipponen P. Demonstration of an intracellular copper-binding protein by Orcein staining in long-standing cholestatic liver diseases. Gut. 1976;17: 787-790.

Speight P.M. Update on oral epithelial dysplasia and progression to cancer. Head Neck Pathol. 2007; 1: 61-66.

Voronkov A., Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr. Pharm. Des. 2013; 19: 634-664.

Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008; 4:68-75. doi: 10.4161/org.4.2.5851.

Xiao C., Wang L., Zhu L., Zhang C., Zhou J. Secreted frizzled-related protein 2 is epigenetically silenced and functions as a tumor suppressor in oral squamous cell carcinoma. Mol. Med. Rep. 2014; 10: 2293-2298.

Arun Gopinathan P., Kokila G., Jyothi M., Ananjan C., Pradeep L., Humaira S. Study of collagen birefringence in different grades of oral squamous cell carcinoma using picrosirius red and polarized light microscopy. Scientifica (Cairo). 2015; 2015:1-7.

Lapis K., Tímár J. Role of elastin matrix interactions in tumor progression. Semin Cancer Biol. 2002; 12: 209-217.

Sabnis S., Kulkarni M., Shinde S., Mani A. Morphological Changes Of Extracellular Matrix In Different Histopathological Grades Of Oral Squamous Cell Carcinoma. Annals of R.S.C.B. 2020; 24: 785-800.

Gobin E., Bagwell K., Wagner J., Mysona D., Sandirasegarane S., Smith N., Bai S., Sharma A., Schleifer R., She J.X. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer. 2019; 19; 581.

Jose J., Heera R., Cherian L., Beena V., Paul S., Arun T.J. Evaluation of Connective Tissue Changes in Different Histological Grades of Oral Squamous Cell Carcinoma: A Histochemical Study. Oral & Maxillofacial Pathology Journal. 2023; 14: 12-17.

El-Kammar H., Afifi N.S., AbdulKhalik D. Role of Alpha Smooth Muscle Actin in Oral Squamous Cell Carcinoma Progression. EDJ. 2019; 65: 2387-2396.

Aziz N.C., Alahmad B.E., Kashmoola M.A., Lestari W., Mokhtar K.I., Rosdy N.M. Goniothalamus umbrosus Induces Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell Line. Journal of International Dental and Medical Research. 2024; 17: 996-999.

Publicado

2025-07-11