Efficacy of Bone Marrow Aspirates in Bone Regeneration Compared to Conventional Bone Grafts- A Systematic Review
DOI:
https://doi.org/10.15517/resqjc21Keywords:
Bone grafts; Bone marrow aspirates; Bone regeneration; New bone formation, Osteogenic potential; Osteoinductive properties; Osteoconductive properties.Abstract
The search for a superior bone graft substitute compared to the gold standard of harvesting autogenous bone grafts has plagued dentists for decades. With the advent of tissue engineering, the search has been aimed at bone graft substitutes with osteogenic potential and osteoinductive and osteoconductive properties. Bone Marrow Aspirates (BMAs) have evolved as a potential adjunct to conventional bone grafts that can substantially enhance the bone regeneration potential of these materials. This systematic review aims to explore and assess the literature on the efficacy of bone marrow aspirates in new bone formation. An electronic search of PubMed, Web of Science, and Scopus databases was conducted to identify articles that evaluated the efficacy of bone marrow aspirates for new bone formation, published until September 2022, and a supplementary manual search of references from these articles was also conducted. Case reports, case series, commentaries, letters to the editor, narrative or systematic reviews, and articles in languages other than English were excluded from consideration. The articles were assessed against the ROB-II tool for Randomised Controlled Trials (RCTs) for risk of bias assessment. GRADE assessment based on the Cochrane Handbook for quality assessment and a summary of findings table were used to present the results. In a comprehensive electronic search of 150 articles from the three databases, seven studies assessed new bone formation in healthy partially edentulous patients who underwent bone regeneration with bone marrow aspirates compared to conventional bone grafts - autogenous harvested bone, allogenic, and alloplastic substitutes. This review concludes that adding bone marrow aspirates results in comparable results to bone graft alone. The results must be interpreted cautiously owing to their 'low quality' GRADE assessment. Future research with a greater sample size, homogenous populations, and comparable digital imaging and software may provide results that can be aptly applied to broader populations.
Downloads
References
Naujokat H., Loger K., Gülses A., Flörke C., Acil Y., Wiltfang J. Effect of enriched bone-marrow aspirates on the dimensional stability of cortico-cancellous iliac bone grafts in alveolar ridge augmentation. Int J Implant Dent 8 (1) (2022) 1-10. https://doi.org/10.1186/s40729-022-00435-1
Kinaci A., Neuhaus V., Ring D.C., Trends in Bone Graft Use in the United States. Orthopedics 37 (9) (2014) e783-e788. https://doi.org/10.3928/01477447-20140825-54
Urban I.A., Monje A., Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral Maxillofac Surg Clin North Am 31 (2) (2019) 331-338. https://doi.org/10.1016/j.coms.2019.01.003
Fu J.-H., Wang H.-L., Horizontal bone augmentation: the decision tree. Int J Periodontics Restorative Dent 31 (4) (2011) 429-436. PMID: 21837309. https://www.researchgate.net/publication/51567303_Horizontal_Bone_Augmentation_The_Decision_Tree
Naujokat H., Loger K., Gülses A., Flörke C., Acil Y., Wiltfang J., Effect of enriched bone-marrow aspirates on the dimensional stability of cortico-cancellous iliac bone grafts in alveolar ridge augmentation. Int J Implant Dent 8 (1) (2022) 34. https://doi.org/10.1186/s40729-022-00435-1
Dallari D., Fini M., Stagni C., et al., In vivo study on the healing of bone defects treated with bone marrow stromal cells, platelet-rich plasma, and freeze-dried bone allografts, alone and in combination. J Orthop Res 24 (5) (2006) 877-888. https://doi.org/10.1002/jor.20112
Lucarelli E., Beccheroni A., Donati D., et al., Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 24 (18) (2003) 3095-3100. https://doi.org/10.1016/s0142-9612(03)00114-5
Ardjomandi N., Duttenhoefer F., Xavier S., Oshima T., Kuenz A., Sauerbier S. In vivo comparison of hard tissue regeneration with ovine mesenchymal stem cells processed with either the FICOLL method or the BMAC method. J Cranio-Maxillofacial Surg 43 (7) (2015) 1177-1183. https://doi.org/10.1016/j.jcms.2015.05.020
McCarrel T., Fortier L., Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res 27(8) (2009) 1033-1042. https://doi.org/10.1002/jor.20853
Shi L., Tee B.C., Emam H., Prokes R., Larsen P., Sun Z., Enhancement of bone marrow aspirate concentrate with local self-healing corticotomies. Tissue Cell 66 (2020) 101383. https://doi.org/10.1016/j.tice.2020.101383
Page M.J., McKenzie J.E., Bossuyt P.M., et al., The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj (2021) 372. https://doi.org/10.1136/bmj.n71
Higgins J.P.T., Thomas J., Chandler J., et al., Cochrane handbook for systematic reviews of interventions. Cochrane Handb Syst Rev Interv (2019) 1-694. https://doi.org/10.1002/9781119536604
Sterne J.A.C., Savović J., Page M.J., et al., RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 366 (2019) 1-8. https://doi.org/10.1136/bmj.l4898
Schünemann H., Brożek J., Guyatt G., Oxman A., et al., eds. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach (2013). https://gdt.gradepro.org/app/handbook/handbook.html
Wildburger A., Payer M., Jakse N., Strunk D., Etchard-Liechtenstein N, Sauerbier S. Impact of autogenous concentrated bone marrow aspirate on bone regeneration after sinus floor augmentation with a bovine bone substitute – a split-mouth pilot study. Clin Oral Implants Res 25(10) (2014) 1175-1181. https://doi.org/10.1111/clr.12228
da Costa C.E.S., Pelegrine A.A., Fagundes D.J., Simoes M. de J., Taha M.O., Use of corticocancellous allogeneic bone blocks impregnated with bone marrow aspirate: a clinical, tomographic, and histomorphometric study. Gen Dent 59 (5) (2011) e200-e205. PMID: 22313831. https://www.researchgate.net/publication/221814081_Use_of_corticocancellous_allogeneic_bone_blocks_impregnated_with_bone_marrow_aspirate_A_clinical_tomographic_and_histomorphometric_study
Payer M., Lohberger B., Strunk D., Reich K.M., Acham S., Jakse N., Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants. Clin Oral Implants Res 25(4) (2014) 468-474. https://doi.org/10.1111/clr.12172
de Oliveira T., Aloise A., Orosz J., de Mello e Oliveira R., de Carvalho P., Pelegrine A., Double Centrifugation Versus Single Centrifugation of Bone Marrow Aspirate Concentrate in Sinus Floor Elevation: A Pilot Study. Int J Oral Maxillofac Implants 31 (1) (2016) 216-222. https://doi.org/10.11607/jomi.4170
Fontes Martins L.C., Sousa Campos de Oliveira A.L., Aloise A.C., et al., Bone marrow aspirate concentrate and platelet-rich fibrin in fresh extraction sockets: A histomorphometric and immunohistochemical study in humans. J Cranio-Maxillofacial Surg 49 (2) (2021)104-109. https://doi.org/10.1016/j.jcms.2020.12.005
Pasquali P.J., Teixeira M.L., Oliveira T.A. de, de Macedo L.G.S., Aloise A.C., Pelegrine A.A., Maxillary Sinus Augmentation Combining Bio-Oss with the Bone Marrow Aspirate Concentrate: A Histomorphometric Study in Humans. Int J Biomater 2015 (2015) 1-7. https://doi.org/10.1155/2015/121286
Sauerbier S., Rickert D., Gutwald R., et al., Bone Marrow Concentrate and Bovine Bone Mineral for Sinus Floor Augmentation: A Controlled, Randomized, Single-Blinded Clinical and Histological Trial-Per-Protocol Analysis. Tissue Eng Part A 17 (17-18) (2011) 2187-2197. https://doi.org/10.1089/ten.tea.2010.0516
Rickert D., Sauerbier S., Nagursky H., Menne D., Vissink A., Raghoebar G.M., Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res 22 (3) (2011) 251-258. https://doi.org/10.1111/j.1600-0501.2010.01981.x
Canellas J.V. dos S., da Costa R.C., Breves R.C., et al., Tomographic and histomorphometric evaluation of socket healing after tooth extraction using leukocyte- and platelet-rich fibrin: A randomized, single-blind, controlled clinical trial. J Cranio-Maxillofacial Surg 48 (1) (2020) 24-32. https://doi.org/10.1016/j.jcms.2019.11.006
Baek J.H., Lee S.C., Lee D.N., Ahn H.S., Nam CH. Effectiveness and Complications of Bone Marrow Aspirate Concentrate in Patients with Knee Osteoarthritis of Kellgren-Lawrence Grades II-III. Medicina (Kaunas). 2024 Jun 13; 60 (6): 977.
Jorge Chahla, Sandeep Mannava, Mark E. Cinque, Andrew G. Geeslin, David Codina, Robert F. LaPrade, Bone Marrow Aspirate Concentrate Harvesting and Processing Technique, Arthroscopy Techniques 2017; 6 (2):441-445.
Encinas R., Phillips T., Hall S., Jackson J.B. 3rd, Gonzalez T. Outcomes and Complications After Bone Marrow Aspirate Harvest From the Calcaneus. Foot Ankle Orthop. 2023 Aug 30; 8 (3): 24730114231194056.
Araújo M.G., Lindhe J., Ridge preservation with the use of Bio-Oss® collagen: A 6-month study in the dog. Clin Oral Implants Res 20(5) (2009) 433-440. https://doi.org/10.1111/j.1600-0501.2009.01705.x
Smiler D., Soltan M., Lee J.W., A histomorphogenic analysis of bone grafts augmented with adult stem cells. Implant Dent 16 (1) (2007) 42–53. https://doi.org/10.1097/id.0b013e3180335934
Sampson S., Bemden A.B., Aufiero D., Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sportsmed 41 (3) (2013) 7-18. https://doi.org/10.3810/psm.2013.09.2022
Klijn R.J., Meijer G.J., Bronkhorst E.M., Jansen J.A., A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev 16 (5) (2010) 493-507. https://doi.org/10.1089/ten.teb.2010.0035
Ting M., Afshar P., Adhami A., Braid S.M., Suzuki J.B., Maxillary sinus augmentation using chairside bone marrow aspirate concentrates for implant site development: a systematic review of histomorphometric studies. Int J Implant Dent 4 (1) (2018) 1-9. https://doi.org/10.1186/s40729-018-0137-3
Takemoto R.C., Fajardo M., Kirsch T., Egol K.A., Quantitative assessment of the bone morphogenetic protein expression from alternate bone graft harvesting sites. J Orthop Trauma 24 (9) (2010) 564-566. https://doi.org/10.1097/bot.0b013e3181ed29a6
Bulgin D., Hodzic E., Komljenovic-Blitva D., Advanced and prospective technologies for potential use in craniofacial tissues regeneration by stem cells and growth factors. J Craniofac Surg 22 (1) (2011) 342-348. https://doi.org/10.1097/scs.0b013e3181f7e185
Published
Issue
Section
License
Copyright (c) 2026 Hannah Kadic, Kamran H. Awan, Shilpa Bhandi, Frank W. Licari, Chiara Bramucci, Shankargouda Patil, Luca Testarelli, Dario Di Nardo.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
ODOVTOS - Int. J. Dent. Sc. endorses CC BY-NC-SA
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms. CC BY-NC-SA includes the following elements:
BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
SA: Adaptations must be shared under the same terms.



