Analysis of RANKL Expression Following Ethanol Administration During Orthodontic Force Application: An In Vivo Study

Authors

  • Dwayne Daniel Fredrick Rehatta Resident, Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia. Author https://orcid.org/0000-0001-7784-3039
  • Ardiansyah S. Pawinru Associate Professor, Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia. Author https://orcid.org/0000-0002-4763-5439
  • Zulfiani Syachbaniah Lecturer Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia. Author
  • Baharuddin M. Ranggang Assistant Professor, Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia. Author https://orcid.org/0009-0002-6573-8922
  • Eddy Heriyanto Habar Associate Professor, Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia. Author https://orcid.org/0000-0002-4228-0624
  • Eka Erwansyah Associate Professor, Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia. Author https://orcid.org/0000-0002-1760-2409

DOI:

https://doi.org/10.15517/1db0eq21

Keywords:

Orthodontic force; Ethanol; Alcohol; RANKL; Tooth movement; Bone remodellng.

Abstract

The prevalence of alcohol consumption is still quite high in worldwide. As more people become aware of malocclusion, it is also reasonable to expect that some orthodontic patients drink alcohol. Impacts of alcohol (ethanol) consumption on orthodontic force still unclear.  Analyze the differences and effects of ethanol on RANKL expression in bone remodeling process during application of orthodontic force. This research was in vivo study, involving twenty-five Wistar rats, fitted with a closed coil spring and then divided into 5 groups; negative control group A (without force and ethanol) on day 0; group K1 (K=given orthodontic force) on day-3 and K2 on day-14, and group P1 (P=given force and 20% ethanol) on day-3 and P2 on day-14. Furthermore, animals were sacrificed, preparations were made and Immunohistochemistry (IHC) was examined to calculate RANKL expression, then data analysis using independent-t and regression test.  Independent sample t-test showed, K and P group had significantly differences of RANKL expression on day 3 and 14 (p<0,05). Regression test results showed duration of ethanol administration significantly affected the level of RANKL expression (p<0,05).  There were  differences in RANKL expression after alcohol administration and there were  effects of ethanol on RANKL expression in bone remodeling process during application of orthodontic force. It’s speculated that ethanol increases osteoclastogenesis, which accelerates orthodontic movement, but more study required.

References

Isola, G., Matarese G., Cordasco G., Perillo L., Ramaglia L. Mechanobiology of the tooth movement during the orthodontic treatment: A literature review. Minerva Stomatologica. 2016; 65 (5): 299-327. doi: https://www.researchgate.net/publication/301834974

Asiry, M.A. Biological aspects of orthodontic tooth movement: A review of literature. SJBS. 2018; 25: 1027-1032. doi: https://doi.org/10.1016/j.sjbs.2018.03.008

Yang F., Wang X.X., Li J., Nie F.J., Cui Q., Fu Y.J. & Zhang J., The effects of binge alcohol exposure on tooth movement and associated root resorption in rats. Alcohol. 2020; pp 1-46. doi: https://doi.org/10.1016/j.alcohol.2020.06.002

Murtaza N., Shamim A., Hussain S., Sadiq M.N., Azeem M., Hamid W. Combined Effect of Nicotine and Caffeine on Orthodontic Tooth Movement in Rats. J Islamabad Med Dental Coll. 2020; 9 (2): 109-114. doi: 10.35787/jimdc.v9i2.462

Yamaguchi M. RANK⁄ RANKL ⁄ OPG during orthodontic tooth movement. Orthod Craniofac Res. 2009; 12: 113-119.

Tuncer, B.B., Ozdemir B.C., Boynuegri D., Karakaya I.B., Erguder I., Yucel A.A., Aral L.A., Ozmeric N., OPG-RANKL levels after continuous orthodontic force. GMJ. 2013; 24 (2): 33-36. doi: https://doi.org/10.12996/gmj.2013.09

Sutjiati R., Devi L.S., Herniyati., Joelijanto R., Ramadhani V., Prijatmoko D., Fiolita S.V., Fadiyah S.N., Martin M. OPG and RANKL Expression on Orthodontic Tooth Movement after Cacao Bean Extract Administration. JIDMR. 2023; 16 (4): 1425-30.

Tritama, T.K. The Consumption of Alcohol and its Effect towards Health. Majority. 2015; 4 (8), pp. 7-10.

WHO. Global status report on alcohol and health. Geneva. 2018; 1-426

Frazao D.R., Maia C.S.F., Chemelo V.S., Monteiro D., Ferreira R.O., Bittencourt L.O., Balbinot G.S., Collares F.M., Rosing C.K., Martins M.D., Lima R.R. Ethanol binge drinking exposure affects alveolar bone quality and aggravates bone loss in experimentally-induced periodontitis. PLoS ONE 2020; 15 (7):1-12. doi: https://doi.org/10.1371/journal. pone.0236161

Li, Y., Jacox L.A., Little S.H., Ko C.C. Orthodontic tooth movement: The biology and clinical implications. KJMS. 2018; 207-214. doi: https://doi.org/10.1016/j.kjms.2018.01.007

Buakate P., Thirarattanasunthon., Wongrith P. Factors influencing alcohol consumption among university students in southern Thailand. Rocz Panstw Zakl Hig 2022; 73 (4): 435-443

Werneck E.C., Mattos F.S., da Silva M.G., do Prado R.F., Araujo A.M. Evaluation of the increase in orthodontic treatment demand in adults. Braz Dent Sci 2012; 15 (1): 47-52

Bannach, S.V., Teixeira F.B., Fernandes L.M.P., Ferreira R.O., Santana L.N.S.S, Fontes-Junior E.A., Oliveira G.B., Prediger R.D., Maia C.S.F., Lima R.R. Alveolar bone loss induced by chronic ethanol consumption from adolescence to adulthood in Wistar rats. Indian J Exp Biol. 2015; 53: 93-7.

De Araujo, C.M., Johann A.C.B.R., Camargo E.S., Tanaka O.M. The effects of binge-pattern alcohol consumption on orthodontic tooth movement. Dental Press J Orthod. 2014; 19 (6): 93-98. doi: https://doi.org/10.1590/2176-9451.19.6.093-098.oar

Golshah A., Omidi K., Nikkerdar N., Ghirbani F. Effect of Caffeine Injection on Orthodontic Tooth Movement in Rats: An Experimental Study on Rats. Int J Dent. 2022; 1-9. doi: https://doi.org/10.1155/2022/7204806

Akhoundi M.S.A., Mirhashemi A., Sheikhzadeh S., Ansari E., Kheirandish Y., Momeni N., Khaarazifard M.J. Alcohol Induced Osteopenia Can Cause Accelerated Orthodontic Tooth Movement in Male Wistar Rats. JIDA. 2016; 28 (3): 104-109.

Sella R.C., de Mendonça M.R., Cuoghi O.A., An T.L. Histomorphometric evaluation of periodontal compression and tension sides during orthodontic tooth movement in rats. Dental Press J Orthod. 2012; 17 (3): 108-17.

Barreiros D., Pucinelli C.M., de Oliveira K.M.H., Paula-Silva F.W.G., Filho P.N., da Silva L.A.B., Kuchler E.C., da Silva R.A.B. Immunohistochemical and mRNA expression of RANK, RANKL, OPG, TLR2 and MyD88 during apical periodontitis progression in mice. J Appl Oral Sci. 2018;1-9. doi: https://doi.org/10.1590/1678-7757-2017-0512

Maltha J.C., Krishnan V., Kuijpers-Jagtman A.M. Cellular and molecular biology of orthodontic tooth movement. Biological Mechanisms of Tooth Movement. 3rd Ed. John Wiley & Sons Ltd; 2021. doi: https://doi.org/10.1002/9781119608912.ch3

Maltha J.C., Kuijpers-Jagtman A.M. Mechanobiology of orthodontic tooth movement: An update. J World Fed Orthod. Elsevier Inc., 2023; 12: 156-160. doi: https://doi.org/10.1016/j.ejwf.2023.05.001.

Li, C., Chung C.J., Hwang C.J., Lee K.J. Local injection of RANKL facilitates tooth movement and alveolar bone remodeling. Oral Diseases. 2019; 25 (2): 550-560. doi: https://doi.org/10.1111/odi.13013

Shroff B. Biology of Orthodontic Tooth Movement. Richmond, Virginia: Springer International Publishing; 2016. doi: https://doi.org/10.1007/978-3-319-26609-1

Niklas A., Proff P., Gosau M., Romer P. The role of hypoxia in orthodontic tooth movement. The role of hypoxia in orthodontic tooth movement. Int J Dent. 2013:1-7. doi: http://dx.doi.org/10.1155/2013/841840

Pawinru A., Achmad H., Wahyuni S., Erwansyah E., Narmada I.B., Samad R., Bukhari A., Habar E.H. Effect of ethanol intake on bone remodeling process during orthodontic treatment in male wistar rats. J Dentomaxillofac Sci. 2024; 9 (2): 95-99. doi: https://doi.org/10.15562/jdmfs.v9i2.1705

De Almeida, J.M., Pazmino V.F.C., Novaes V.C.N., Bomfim S.R.M., Nagata M.J.H., Oliveira F.L.P., Matheus H.R., Ervolino E. Chronic consumption of alcohol increases alveolar bone loss. PLoS ONE. 2020; 15 (8): 1-15. doi: https://doi.org/10.1371/journal.pone.0232731

Iitsuka N., Hie M., Nakanishi A., Tsukamoto I. Ethanol increases osteoclastogenesis associated with the increased expression of RANK, PU.1 and MITF in vitro and in vivo. Int J Mol Med. 2012; 30, 165-172.

Barcia J.M., Portoles S., Portoles L., Ausina V., Perez-Pastor G.M.A., Romero FJ., Villar V.M. Does oxidative stress induced by alcohol consumption affect orthodontic treatment outcome?. Front Physiol. 2017; 8 (22): 1-11. doi: https://doi.org/10.3389/fphys.2017.00022

Makrygiannakis, M.A., Athanasiou, C.A., Kaklamanos, E.G. May alcoholic and non-Alcoholic drinks affect the rate of orthodontic tooth movement? A systematic review of animal studies. Eur J Orthod. 2023; 45 (2): 186-195. doi: https://doi.org/10.1093/ejo/cjac052

Eby J.M., Sharieh F., Callaci J.J. Impact of Alcohol on Bone Health, Homeostasis, and Fracture Repair. Curr Pathobiol Rep. Springer. 2020; 8 (3): 75-86. doi: https://doi.org/10.1007/s40139-020-00209-7

Published

2025-07-14