Optogenetics Era in Oral and Maxillofacial Field

Authors

Keywords:

Optogenetics; Genes; Oral; Maxillofacial.

Abstract

Optogenetics is an interdisciplinary field that blends genomics and optical technology to regulate gene expression and biological processes. It offers advantages such as precise control over timing and placement, low invasiveness, and excellent efficiency. This procedure is enabled by photosensory proteins that have been genetically engineered to change form when exposed to light. As a result, optogenetic technologies provide important insights into a variety of biological mechanisms, ranging from subcellular and cellular processes to brain circuitry and behavioural patterns. This review will discuss the evolution of optogenetics and recent advances in its application in oral and maxillofacial studies. We will also look at how optogenetics has affected preclinical studies. While the scope of optogenetic techniques grows, obstacles remain in their application to oral and dental research.

References

Cao Y., Pan S.W., Yan M.Y., et al. (2021). Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals. BMC Biol, 19: 252. https://doi.org/10.1186/s12915-021-01187-x

Moreno Morales N., Patel M.T., Stewart C.J., et al. (2021). Optogenetic tools for control of public goods in Saccharomyces cerevisiae. mSphere, 6 (4): e0058121.https://doi.org/10.1128/mSphere.00581-21

Vajtay T.J., Bandi A., Upadhyay A., et al. (2019). Optogenetic and transcriptomic interrogation of enhanced muscle function in the paralyzed mouse whisker pad. J Neurophysiol, 121 (4): 1491-1500. https://doi.org/10.1152/jn.00837.2018

Niyazi M., Zibaii M.I., Chavoshinezhad S., et al. (2020). Neurogenic differentiation of human dental pulp stem cells by optogenetics stimulation. J ChemNeuroanat, 109:101821.https://doi.org/10.1016/j.jchemneu.2020.101821

Esmaeili V., Tamura K., Muscinelli S.P., et al. (2021). Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response.Neuron, 109 (13): 2183-2201. https://doi.org/10.1016/j.neuron.2021.05.005

Xia A.G., Qian M.J., Wang C.C., et al. (2021). Optogenetic modification of Pseudomonas aeruginosa enables controllabletwitching motility and host infection. ACS Synth Biol, 10 (3): 531-541.https://doi.org/10.1021/acssynbio.0c00559

Kc E., Islam J., Kim S., et al.(2022). Pain relief in a trigeminal neuralgia model via optogenetic inhibition on trigeminal ganglion itself with flexible optic fiber cannula. Front Cell Neurosci, 16: 880369. https://doi.org/10.3389/fncel.2022.880369

Oesterhelt D., Stoeckenius W. (1971). Rhodopsin-like protein from the purple membrane of Halobacteriumhalobium. Nat New Biol, 233 (39): 149-152. https://doi.org/10.1038/newbio233149a0

Matsuno-Yagi A., Mukohata Y. (1977). Two possible roles of bacteriorhodopsin; a comparative study of strains of Halo-bacterium halobium differing in pigmentation. BiochemBiophys Res Commun, 78 (1): 237-243.669

Chowdhury S., Yamanaka A. (2021). Fiberlessoptogenetics. In: Yawo H., Kandori H., Koizumi A., et al. (Eds.), Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond, 2nd Ed. Springer, Singapore, p.407-416. https://doi.org/10.1007/978-981-15-8763-4_26

Reshetnikov V.V., Smolskaya S.V., Feoktistova S.G., et al. (2022). Optogenetic approaches in biotechnology and biomaterials.TrendsBiotechnol, 40 (7): 858-874. https://doi.org/10.1016/j.tibtech.2021.12.007

Fenno L., Yizhar O., Deisseroth K. (2011). The development and application of optogenetics. Annu Rev Neurosci, 34: 389-412. https://doi.org/10.1146/annurev-neuro-061010-113817

Radović K., Brković B., Roganović J., Ilić J., MilićLemić A., Jovanović B. (2022). Salivary VEGF and post-extraction wound healing in type 2 diabetic immediate denture wearers. ActaOdontol. Scand. 2022; 80: 9-14. doi: 10.1080/00016357.2021.1930149

Müller K., Engesser R., Metzger S., Schulz S., Kämpf M.M., Busacker M., Steinberg T., Tomakidi P., Ehrbar M., Nagy F. (2013). A. red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41: e77. doi: 10.1093/nar/gkt002

Müller K., Engesser R., Schulz S., Steinberg T., Tomakidi P., Weber C.C., Ulm R., Timmer J., Zurbriggen M.D., Weber W. (2013). Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res. 41: e124. https://doi.org/10.1093/nar/gkt340

Falkner A.L., Wei D.Y., Song A., et al. (2020). Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron, 106 (4): 637-648.e6. https://doi.org/10.1016/j.neuron.2020.02.014

Aly L. A. (2015). Stem cells: Sources, and regenerative therapies in dental research and practice. World journal of stem cells, 7 (7), 1047-1053. https://doi.org/10.4252/wjsc.v7.i7.1047

Bar J.K., Lis-Nawara A., Grelewski P.G. (2021). Dental pulp stem cell-derived secretome and its regenerative potential. Int J MolSci, 22 (21): 12018. https://doi.org/10.3390/ijms222112018

Kim J.-Y., Choung P.-H. (2020). USP1 inhibitor ML323 enhances osteogenic potential of human dental pulp stem cells. Biochem. Biophys. Res.Commun. 2020; 530: 418-424. https://doi.org/10.1016/j.bbrc.2020.05.095

Huang D., Li R., Ren J., Luo H., Wang W., Zhou C. (2021). Temporal induction of Lhx8 by optogenetic control system for efficient bone regeneration. Stem Cell Res. Ther. 2021;12:339. https://doi.org/10.1186/s13287-021-02412-8

Benevides E.S., Sunshine M.D., Rana S., et al. (2022). Optogenetic activation of the diaphragm. Sci Rep, 12: 6503. https://doi.org/10.1038/s41598-022-10240-w

Mercer Lindsay N., Knutsen P.M., Lozada A.F., et al. (2019). Orofacial movements involve parallel corticobulbar projections from motor cortex to trigeminal premotor nuclei.Neuron, 104 (4): 765-780.e3. https://doi.org/10.1016/j.neuron.2019.08.032

Gong R., Xu S.J., Hermundstad A., et al.(2020). Hindbrain doublenegative feedback mediates palatability-guided food and water consumption. Cell, 182 (6): 1589-1605.e22. https://doi.org/10.1016/j.cell.2020.07.031

Hernandez J., Perez L., Soto R., et al.(2021). Nociceptin/orphanin FQ neurons in the arcuate nucleus and ventral tegmental area act via nociceptin opioid peptide receptor signaling to inhibit proopiomelanocortin and A10 dopamine neurons and thereby modulate ingestion of palatable food. PhysiolBehav, 228: 113183. https://doi.org/10.1016/j.physbeh.2020.113183

Mayrhofer J.M., El-Boustani S., Foustoukos G., et al. (2019). Distinct contributions of whisker sensory cortex and tonguejaw motor cortex in a goal-directed sensorimotor transformation. Neuron, 103 (6): 1034-1043.e5. https://doi.org/10.1016/j.neuron.2019.07.008

Lee J., Sabatini B.L. (2021). Striatal indirect pathway mediates exploration via collicular competition. Nature, 599 (7886): 645-649. https://doi.org/10.1038/s41586-021-04055-4

Sugai T., Nishie W., 2020. Odontogenic facial cellulitis. BMJ Case Rep, 13 (12): e239381. https://doi.org/10.1136/bcr-2020-239381

AlBassri T.K., AlShaibi S., Khan F., et al. (2020). A rare case of cellulitis after tetanus toxoid (TT) vaccination. J FamilyMed Prim Care, 9 (3): 1762-1764. https://doi.org/10.4103/jfmpc.jfmpc_1194_19

Morreale F.E., Kleine S., Leodolter J., et al. (2022). BacPROTACs mediate targeted protein degradation in bacteria. Cell, 185 (13): 2338-2353. e18. https://doi.org/10.1016/j.cell.2022.05.009

Lindner F., Diepold A. (2022). Optogenetics in bacteria ‒applications and opportunities. FEMS Microbiol Rev, 46 (2):fuab055. https://doi.org/10.1093/femsre/fuab055

Berry A., Han K., Trouillon J., et al. (2018). cAMP and Vfrcontrolexolysin expression and cytotoxicity of Pseudomonasaeruginosa taxonomic outliers. J Bacteriol, 200 (12): e00135-18. https://doi.org/10.1128/JB.00135-18

Ma Y.P., Hsu G., Zhang F.G. (2020). The applicability and efficacy of magnetic resonance-guided high intensity focused ultrasound system in the treatment of primary trigeminal neuralgia. Med Hypotheses, 139:109688. https://doi.org/10.1016/j.mehy.2020.109688

Chen L.Q., Lv X.J., Guo Q.H., et al. (2023). Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents. BrJPharmacol, 180 (8): 1090-1113. https://doi.org/10.1111/bph.15994

Liu M.X., Li Y., Zhong J., et al. (2021). The effect of IL-6/Piezo2 on the trigeminal neuropathic pain. Aging, 13 (10): 13615-13625. https://doi.org/10.18632/aging.202887

Hardt S., Fischer C., Vogel A., et al. (2019). Distal infraorbital nerve injury: a model for persistent facial pain in mice. PAIN, 160 (6): 1431-1447. https://doi.org/10.1097/j.pain.0000000000001518

Berger A.A., Winnick A., Carroll A.H., et al. (2022). Rimegepant for the treatment of migraine. Health Psychol Res, 10 (5): 38534. https://doi.org/10.52965/001c.38534

Islam J., Kc E., Kim S., et al. (2021). Stimulating GABAergic neurons in the nucleus accumbens core alters the trigeminal neuropathic pain responses in a rat model of infraorbital nerve injury. Int J MolSci, 22 (16): 8421. https://doi.org/10.3390/ijms22168421

Islam J., Kc E., Oh B.H., et al. (2020). Optogenetic stimulation of the motor cortex alleviates neuropathic pain in rats of infraorbital nerve injury with/without CGRP knock-down. J Headache Pain, 21:106. https://doi.org/10.1186/s10194-020-01174-7

Ntziachristos V. (2010). Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods, 7 (8): 603-614. https://doi.org/10.1038/nmeth.1483

Abd-elmonsif N.M., Gamal S.(2023). Histological and molecular response of oral cavity tissues to Covid-19. MolBiol Rep 50, 7893-7899. https://doi.org/10.1007/s11033-023-08607-x

Published

2025-07-16