La era de la optogenética en el ámbito oral y maxilofacial
DOI:
https://doi.org/10.15517/42hxj398Palabras clave:
Optogenética; Genes; Cavidad oral; Maxilofacial.Resumen
La optogenética es un campo interdisciplinario que integra la genómica y la tecnología óptica para regular la expresión génica y diversos procesos biológicos. Esta técnica ofrece ventajas como el control preciso del momento y la localización de la activación, baja invasividad y una elevada eficiencia. El procedimiento se basa en proteínas fotosensibles que han sido modificadas genéticamente para cambiar su conformación al ser expuestas a la luz. Como resultado, las tecnologías optogenéticas han permitido avances significativos en la comprensión de múltiples mecanismos biológicos, que abarcan desde procesos subcelulares y celulares hasta circuitos neuronales y patrones conductuales. Esta revisión aborda la evolución de la optogenética y los avances recientes en su aplicación en estudios del sistema estomatognático, específicamente en el ámbito oral y maxilofacial. Asimismo, se analiza el impacto de esta tecnología en investigaciones preclínicas. Aunque el alcance de las técnicas optogenéticas continúa ampliándose, persisten desafíos importantes para su implementación en el campo de la investigación odontológica y oral.
Referencias
Cao Y., Pan S.W., Yan M.Y., et al. (2021). Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals. BMC Biol, 19: 252. https://doi.org/10.1186/s12915-021-01187-x
Moreno Morales N., Patel M.T., Stewart C.J., et al. (2021). Optogenetic tools for control of public goods in Saccharomyces cerevisiae. mSphere, 6 (4): e0058121.https://doi.org/10.1128/mSphere.00581-21
Vajtay T.J., Bandi A., Upadhyay A., et al. (2019). Optogenetic and transcriptomic interrogation of enhanced muscle function in the paralyzed mouse whisker pad. J Neurophysiol, 121 (4): 1491-1500. https://doi.org/10.1152/jn.00837.2018
Niyazi M., Zibaii M.I., Chavoshinezhad S., et al. (2020). Neurogenic differentiation of human dental pulp stem cells by optogenetics stimulation. J ChemNeuroanat, 109:101821.https://doi.org/10.1016/j.jchemneu.2020.101821
Esmaeili V., Tamura K., Muscinelli S.P., et al. (2021). Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response.Neuron, 109 (13): 2183-2201. https://doi.org/10.1016/j.neuron.2021.05.005
Xia A.G., Qian M.J., Wang C.C., et al. (2021). Optogenetic modification of Pseudomonas aeruginosa enables controllabletwitching motility and host infection. ACS Synth Biol, 10 (3): 531-541.https://doi.org/10.1021/acssynbio.0c00559
Kc E., Islam J., Kim S., et al.(2022). Pain relief in a trigeminal neuralgia model via optogenetic inhibition on trigeminal ganglion itself with flexible optic fiber cannula. Front Cell Neurosci, 16: 880369. https://doi.org/10.3389/fncel.2022.880369
Oesterhelt D., Stoeckenius W. (1971). Rhodopsin-like protein from the purple membrane of Halobacteriumhalobium. Nat New Biol, 233 (39): 149-152. https://doi.org/10.1038/newbio233149a0
Matsuno-Yagi A., Mukohata Y. (1977). Two possible roles of bacteriorhodopsin; a comparative study of strains of Halo-bacterium halobium differing in pigmentation. BiochemBiophys Res Commun, 78 (1): 237-243.669
Chowdhury S., Yamanaka A. (2021). Fiberlessoptogenetics. In: Yawo H., Kandori H., Koizumi A., et al. (Eds.), Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond, 2nd Ed. Springer, Singapore, p.407-416. https://doi.org/10.1007/978-981-15-8763-4_26
Reshetnikov V.V., Smolskaya S.V., Feoktistova S.G., et al. (2022). Optogenetic approaches in biotechnology and biomaterials.TrendsBiotechnol, 40 (7): 858-874. https://doi.org/10.1016/j.tibtech.2021.12.007
Fenno L., Yizhar O., Deisseroth K. (2011). The development and application of optogenetics. Annu Rev Neurosci, 34: 389-412. https://doi.org/10.1146/annurev-neuro-061010-113817
Radović K., Brković B., Roganović J., Ilić J., MilićLemić A., Jovanović B. (2022). Salivary VEGF and post-extraction wound healing in type 2 diabetic immediate denture wearers. ActaOdontol. Scand. 2022; 80: 9-14. doi: 10.1080/00016357.2021.1930149
Müller K., Engesser R., Metzger S., Schulz S., Kämpf M.M., Busacker M., Steinberg T., Tomakidi P., Ehrbar M., Nagy F. (2013). A. red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41: e77. doi: 10.1093/nar/gkt002
Müller K., Engesser R., Schulz S., Steinberg T., Tomakidi P., Weber C.C., Ulm R., Timmer J., Zurbriggen M.D., Weber W. (2013). Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res. 41: e124. https://doi.org/10.1093/nar/gkt340
Falkner A.L., Wei D.Y., Song A., et al. (2020). Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron, 106 (4): 637-648.e6. https://doi.org/10.1016/j.neuron.2020.02.014
Aly L. A. (2015). Stem cells: Sources, and regenerative therapies in dental research and practice. World journal of stem cells, 7 (7), 1047-1053. https://doi.org/10.4252/wjsc.v7.i7.1047
Bar J.K., Lis-Nawara A., Grelewski P.G. (2021). Dental pulp stem cell-derived secretome and its regenerative potential. Int J MolSci, 22 (21): 12018. https://doi.org/10.3390/ijms222112018
Kim J.-Y., Choung P.-H. (2020). USP1 inhibitor ML323 enhances osteogenic potential of human dental pulp stem cells. Biochem. Biophys. Res.Commun. 2020; 530: 418-424. https://doi.org/10.1016/j.bbrc.2020.05.095
Huang D., Li R., Ren J., Luo H., Wang W., Zhou C. (2021). Temporal induction of Lhx8 by optogenetic control system for efficient bone regeneration. Stem Cell Res. Ther. 2021;12:339. https://doi.org/10.1186/s13287-021-02412-8
Benevides E.S., Sunshine M.D., Rana S., et al. (2022). Optogenetic activation of the diaphragm. Sci Rep, 12: 6503. https://doi.org/10.1038/s41598-022-10240-w
Mercer Lindsay N., Knutsen P.M., Lozada A.F., et al. (2019). Orofacial movements involve parallel corticobulbar projections from motor cortex to trigeminal premotor nuclei.Neuron, 104 (4): 765-780.e3. https://doi.org/10.1016/j.neuron.2019.08.032
Gong R., Xu S.J., Hermundstad A., et al.(2020). Hindbrain doublenegative feedback mediates palatability-guided food and water consumption. Cell, 182 (6): 1589-1605.e22. https://doi.org/10.1016/j.cell.2020.07.031
Hernandez J., Perez L., Soto R., et al.(2021). Nociceptin/orphanin FQ neurons in the arcuate nucleus and ventral tegmental area act via nociceptin opioid peptide receptor signaling to inhibit proopiomelanocortin and A10 dopamine neurons and thereby modulate ingestion of palatable food. PhysiolBehav, 228: 113183. https://doi.org/10.1016/j.physbeh.2020.113183
Mayrhofer J.M., El-Boustani S., Foustoukos G., et al. (2019). Distinct contributions of whisker sensory cortex and tonguejaw motor cortex in a goal-directed sensorimotor transformation. Neuron, 103 (6): 1034-1043.e5. https://doi.org/10.1016/j.neuron.2019.07.008
Lee J., Sabatini B.L. (2021). Striatal indirect pathway mediates exploration via collicular competition. Nature, 599 (7886): 645-649. https://doi.org/10.1038/s41586-021-04055-4
Sugai T., Nishie W., 2020. Odontogenic facial cellulitis. BMJ Case Rep, 13 (12): e239381. https://doi.org/10.1136/bcr-2020-239381
AlBassri T.K., AlShaibi S., Khan F., et al. (2020). A rare case of cellulitis after tetanus toxoid (TT) vaccination. J FamilyMed Prim Care, 9 (3): 1762-1764. https://doi.org/10.4103/jfmpc.jfmpc_1194_19
Morreale F.E., Kleine S., Leodolter J., et al. (2022). BacPROTACs mediate targeted protein degradation in bacteria. Cell, 185 (13): 2338-2353. e18. https://doi.org/10.1016/j.cell.2022.05.009
Lindner F., Diepold A. (2022). Optogenetics in bacteria ‒applications and opportunities. FEMS Microbiol Rev, 46 (2):fuab055. https://doi.org/10.1093/femsre/fuab055
Berry A., Han K., Trouillon J., et al. (2018). cAMP and Vfrcontrolexolysin expression and cytotoxicity of Pseudomonasaeruginosa taxonomic outliers. J Bacteriol, 200 (12): e00135-18. https://doi.org/10.1128/JB.00135-18
Ma Y.P., Hsu G., Zhang F.G. (2020). The applicability and efficacy of magnetic resonance-guided high intensity focused ultrasound system in the treatment of primary trigeminal neuralgia. Med Hypotheses, 139:109688. https://doi.org/10.1016/j.mehy.2020.109688
Chen L.Q., Lv X.J., Guo Q.H., et al. (2023). Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents. BrJPharmacol, 180 (8): 1090-1113. https://doi.org/10.1111/bph.15994
Liu M.X., Li Y., Zhong J., et al. (2021). The effect of IL-6/Piezo2 on the trigeminal neuropathic pain. Aging, 13 (10): 13615-13625. https://doi.org/10.18632/aging.202887
Hardt S., Fischer C., Vogel A., et al. (2019). Distal infraorbital nerve injury: a model for persistent facial pain in mice. PAIN, 160 (6): 1431-1447. https://doi.org/10.1097/j.pain.0000000000001518
Berger A.A., Winnick A., Carroll A.H., et al. (2022). Rimegepant for the treatment of migraine. Health Psychol Res, 10 (5): 38534. https://doi.org/10.52965/001c.38534
Islam J., Kc E., Kim S., et al. (2021). Stimulating GABAergic neurons in the nucleus accumbens core alters the trigeminal neuropathic pain responses in a rat model of infraorbital nerve injury. Int J MolSci, 22 (16): 8421. https://doi.org/10.3390/ijms22168421
Islam J., Kc E., Oh B.H., et al. (2020). Optogenetic stimulation of the motor cortex alleviates neuropathic pain in rats of infraorbital nerve injury with/without CGRP knock-down. J Headache Pain, 21:106. https://doi.org/10.1186/s10194-020-01174-7
Ntziachristos V. (2010). Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods, 7 (8): 603-614. https://doi.org/10.1038/nmeth.1483
Abd-elmonsif N.M., Gamal S.(2023). Histological and molecular response of oral cavity tissues to Covid-19. MolBiol Rep 50, 7893-7899. https://doi.org/10.1007/s11033-023-08607-x
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Nehad M. Abd-elmonsif, Sherif Gamal.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
ODOVTOS - Int. J. Dent. Sc. endorses CC BY-NC-SA
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms. CC BY-NC-SA includes the following elements:
BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
SA: Adaptations must be shared under the same terms.