Enhanced Hierarchical Attention Network-Based Drug-Gene Association for Angiotensin Receptors in Periodontal Inflammation

Authors

  • Pradeep K. Yadalam Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai - 600 077.Tamilnadu, India. Author https://orcid.org/0000-0002-6653-4123
  • Carlos M. Ardila Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai - 600 077.Tamilnadu, India. Basic Sciences Department, Faculty of Dentistry, Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, 050010, Colombia. Author https://orcid.org/0000-0002-3663-1416

Keywords:

Angiotensin; Cytoscape; Cardiovascular disease; Drug-gene associations; Periodontal inflammation; Deep learning; AT1/AT2 receptors.

Abstract

Periodontal inflammation, a chronic condition affecting teeth and supporting structures, is linked to cardiovascular disease. The renin-angiotensin system plays a crucial role in inflammation and oxidative stress, with AT1 and AT2 receptors affecting vascular functions and inflammatory responses. This study aims to utilize angiotensin receptors in periodontal inflammation through enhanced hysterical attention network-based drug-gene association. Data preprocessing is crucial for ensuring the quality and reliability of drug and gene data, particularly in research involving angiotensin receptors, by identifying duplicates and correcting inconsistent formats. Cytoscape was utilized to import drugs and genes linked to angiotensin receptors, thereby constructing and analyzing a network. The Hierarchical Attention Network is an innovative framework for processing structured data with hierarchical relationships. It is suitable for tasks where features can be organized into multi-level structures. The network, with 1,172 nodes and 4,315 edges, has efficient communication, low density, significant connectivity variance, moderate centralization, and four connected components, with a 1.531-second analysis time. The model's R² score is 0.3631, indicating that the features can explain 36.31% of the target variable's variance. However, the model's predictions are about 0.8013 units away from actual values, suggesting room for improvement. Integrating hierarchical attention networks in deep learning models is promising for predicting drug and gene interactions in angiotensin receptors in periodontal inflammation.

References

Sanz M., Marco Del Castillo A., Jepsen S., Gonzalez-Juanatey J.R., D’Aiuto F., Bouchard P., et al. Periodontitis and cardiovascular diseases: Consensus report. J Clin Periodontol. 2020; 47: 268-88.

Kornman K.S. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008; 79 (8 Suppl): 1560-8.

Li J., Xiao X., Wei W., Ding H., Yue Y., Tian Y., et al. Inhibition of angiotensin II receptor I prevents inflammation and bone loss in periodontitis. J Periodontol. 2019; 90: 208-16.

Lima M.L. de S., Martins A.A., Medeiros CACX de, Guerra G.C.B., Santos R., Bader M., et al. The Receptor AT1 Appears to Be Important for the Maintenance of Bone Mass and AT2 Receptor Function in Periodontal Bone Loss Appears to Be Regulated by AT1 Receptor. Int J Mol Sci. 2021; 22: 12849.

Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M., et al. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015; 10: e0134601.

Saravi B., Lang G., Ülkümen S., Burchard T., Weihrauch V., Patzelt S., et al. The tissue renin-angiotensin system (tRAS) and the impact of its inhibition on inflammation and bone loss in the periodontal tissue. Eur Cell Mater. 2020; 40: 203-26.

Yadalam P.K., Natarajan P.M., Mosaddad S.A., Heboyan A. Graph neural networks-based prediction of drug gene association of P2X receptors in periodontal pain. J Oral Biol Craniofac Res. 2024; 14: 335-8.

Yadalam P.K., Ardila C.M. Artificial Intelligence-Driven Multiomics Network Analysis Reveals Resistance Mechanisms in Oral Cancer. Int Dent J. 2024 ; 74: 1180-1.

Bi H., Lu L., Meng Y. Hierarchical attention network for multivariate time series long-term forecasting. Applied intelligence (Dordrecht, Netherlands). 2023; 53: 5060-71.

Lima M.L. de S., Medeiros CACX de, Guerra G.C.B., Santos R., Bader M., Pirih F.Q., et al. AT1 and AT2 Receptor Knockout Changed Osteonectin and Bone Density in Mice in Periodontal Inflammation Experimental Model. Int J Mol Sci. 2021; 22: 5217.

Trivandrum Anandapadmanabhan L., Ramani P., Ramadoss R., Panneerselvam S., Sundar S. Effect of COVID-19 on Dental Education: A Review. Cureus. 2022; 14 (4): e24455.

Moovarkumudalvan B., Geethakumari A.M., Ramadoss R., Biswas K.H., Mifsud B. Structure-Based Virtual Screening and Functional Validation of Potential Hit Molecules Targeting the SARS-CoV-2 Main Protease. Biomolecules. 2022; 12: 1754 .

Sundar S., Ramadoss R., Shanmugham R., Anandapadmanabhan L.T., Paneerselvam S., Ramani P., et al. Salivary Antibody Response of COVID-19 in Vaccinated and Unvaccinated Young Adult Populations. Vaccines (Basel). 2022; 10: 1819.

Gao S., Young M.T., Qiu J.X., Yoon H.J., Christian J.B., Fearn P.A., et al. Hierarchical attention networks for information extraction from cancer pathology reports. J Am Med Inform Assoc. 2018; 25: 321-30.

Mousavi S., Afghah F., Acharya U.R. HAN-ECG: An interpretable atrial fibrillation detection model using hierarchical attention networks. Comput Biol Med. 2020; 127: 104057.

Skuta C., Popr M., Muller T., Jindrich J., Kahle M., Sedlak D., et al. Probes & Drugs portal: an interactive, open data resource for chemical biology. Nat Methods. 2017; 14: 759-60.

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13: 2498-504.

Li X., Lu R., Liu P., Zhu Z. Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification. J Supercomput. 2022; 78: 14846-65.

Saravi B., Lang G., Ülkümen S., Burchard T., Weihrauch V., Patzelt S., et al. The tissue renin-angiotensin system (tRAS) and the impact of its inhibition on inflammation and bone loss in the periodontal tissue. Eur Cell Mater. 2020; 40: 203-26.

Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M., et al. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015; 10: e0134601.

Lin E.C., Chiang Y.C., Lin H.Y., Tseng S.Y., Hsieh Y.T., Shieh J.A., et al. Unraveling the Link between Periodontitis and Coronavirus Disease 2019: Exploring Pathogenic Pathways and Clinical Implications. Biomedicines. 2023; 11: 2789.

Rubio M.C., Lewin P.G., De la Cruz G., Sarudiansky A.N., Nieto M., Costa O.R., et al. Effect of angiotensin-converting enzyme inhibitors on vascular endothelial function in hypertensive patients after intensive periodontal treatment. Acta Odontol Latinoam. 2016; 29: 60-7.

Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M., et al. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015; 10: e0134601.

Saravi B., Lang G., Ülkümen S., Burchard T., Weihrauch V., Patzelt S., et al. The tissue renin-angiotensin system (tRAS) and the impact of its inhibition on inflammation and bone loss in the periodontal tissue. Eur Cell Mater. 2020; 40: 203-26.

Pasini A.F., Garbin U., Nava M.C., Stranieri C., Pellegrini M., Boccioletti V., et al. Effect of sulfhydryl and non-sulfhydryl angiotensin-converting enzyme inhibitors on endothelial function in essential hypertensive patients. Am J Hypertens. 2007; 20: 443-50.

Yang Y., Walker T.M., Kouchaki S., Wang C., Peto TEA, Crook D.W., et al. An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction. Brief Bioinform. 2021; 22: bbab299.

Jiang Z., Lu Y., Liu Z., Wu W., Xu X., Dinnyés A, et al. Drug resistance prediction and resistance genes identification in Mycobacterium tuberculosis based on a hierarchical attentive neural network utilizing genome-wide variants. Brief Bioinform. 2022; 23: bbac041.

Dong Z., Zhang H., Chen Y., Payne PRO, Li F. Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling. Cancers (Basel). 2023; 15: 4210.

Published

2025-07-22