Red de atención jerárquica mejorada para asociaciones fármaco-gen en receptores de angiotensina en la inflamación periodontal
Palabras clave:
Angiotensina; Cytoscape; Enfermedades cardiovasculares; Asociaciones fármaco-gen; Inflamación periodontal; Aprendizaje profundo; Receptores AT1/AT2.Resumen
La inflamación periodontal, una afección crónica que afecta a los dientes y sus estructuras de soporte, está vinculada a enfermedades cardiovasculares. El sistema renina-angiotensina desempeña un papel crucial en la inflamación y el estrés oxidativo, con los receptores AT1 y AT2 influyendo en las funciones vasculares y las respuestas inflamatorias. Este estudio busca utilizar receptores de angiotensina en la inflamación periodontal mediante una red de atención jerárquica mejorada para asociaciones fármaco-gen. El preprocesamiento de datos es fundamental para garantizar la calidad y fiabilidad de los datos de fármacos y genes, especialmente en investigaciones que involucran receptores de angiotensina, identificando duplicados y corrigiendo formatos inconsistentes. Se utilizó Cytoscape para importar fármacos y genes asociados a receptores de angiotensina, construyendo y analizando una red. La Red de Atención Jerárquica es un marco innovador para procesar datos estructurados con relaciones jerárquicas, ideal para tareas donde las características pueden organizarse en estructuras multinivel. La red, con 1.172 nodos y 4.315 aristas, muestra comunicación eficiente, baja densidad, variación significativa en conectividad, centralización moderada y cuatro componentes conexos, con un tiempo de análisis de 1,531 segundos. El modelo obtuvo un puntaje R² de 0,3631, indicando que las características explican el 36,31% de la varianza de la variable objetivo. Sin embargo, las predicciones del modelo se desvían aproximadamente 0,8013 unidades de los valores reales, sugiriendo margen de mejora. La integración de redes de atención jerárquica en modelos de aprendizaje profundo es prometedora para predecir interacciones fármaco-gen en receptores de angiotensina en la inflamación periodontal.
Referencias
Sanz M., Marco Del Castillo A., Jepsen S., Gonzalez-Juanatey J.R., D’Aiuto F., Bouchard P., et al. Periodontitis and cardiovascular diseases: Consensus report. J Clin Periodontol. 2020; 47: 268-88.
Kornman K.S. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008; 79 (8 Suppl): 1560-8.
Li J., Xiao X., Wei W., Ding H., Yue Y., Tian Y., et al. Inhibition of angiotensin II receptor I prevents inflammation and bone loss in periodontitis. J Periodontol. 2019; 90: 208-16.
Lima M.L. de S., Martins A.A., Medeiros CACX de, Guerra G.C.B., Santos R., Bader M., et al. The Receptor AT1 Appears to Be Important for the Maintenance of Bone Mass and AT2 Receptor Function in Periodontal Bone Loss Appears to Be Regulated by AT1 Receptor. Int J Mol Sci. 2021; 22: 12849.
Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M., et al. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015; 10: e0134601.
Saravi B., Lang G., Ülkümen S., Burchard T., Weihrauch V., Patzelt S., et al. The tissue renin-angiotensin system (tRAS) and the impact of its inhibition on inflammation and bone loss in the periodontal tissue. Eur Cell Mater. 2020; 40: 203-26.
Yadalam P.K., Natarajan P.M., Mosaddad S.A., Heboyan A. Graph neural networks-based prediction of drug gene association of P2X receptors in periodontal pain. J Oral Biol Craniofac Res. 2024; 14: 335-8.
Yadalam P.K., Ardila C.M. Artificial Intelligence-Driven Multiomics Network Analysis Reveals Resistance Mechanisms in Oral Cancer. Int Dent J. 2024 ; 74: 1180-1.
Bi H., Lu L., Meng Y. Hierarchical attention network for multivariate time series long-term forecasting. Applied intelligence (Dordrecht, Netherlands). 2023; 53: 5060-71.
Lima M.L. de S., Medeiros CACX de, Guerra G.C.B., Santos R., Bader M., Pirih F.Q., et al. AT1 and AT2 Receptor Knockout Changed Osteonectin and Bone Density in Mice in Periodontal Inflammation Experimental Model. Int J Mol Sci. 2021; 22: 5217.
Trivandrum Anandapadmanabhan L., Ramani P., Ramadoss R., Panneerselvam S., Sundar S. Effect of COVID-19 on Dental Education: A Review. Cureus. 2022; 14 (4): e24455.
Moovarkumudalvan B., Geethakumari A.M., Ramadoss R., Biswas K.H., Mifsud B. Structure-Based Virtual Screening and Functional Validation of Potential Hit Molecules Targeting the SARS-CoV-2 Main Protease. Biomolecules. 2022; 12: 1754 .
Sundar S., Ramadoss R., Shanmugham R., Anandapadmanabhan L.T., Paneerselvam S., Ramani P., et al. Salivary Antibody Response of COVID-19 in Vaccinated and Unvaccinated Young Adult Populations. Vaccines (Basel). 2022; 10: 1819.
Gao S., Young M.T., Qiu J.X., Yoon H.J., Christian J.B., Fearn P.A., et al. Hierarchical attention networks for information extraction from cancer pathology reports. J Am Med Inform Assoc. 2018; 25: 321-30.
Mousavi S., Afghah F., Acharya U.R. HAN-ECG: An interpretable atrial fibrillation detection model using hierarchical attention networks. Comput Biol Med. 2020; 127: 104057.
Skuta C., Popr M., Muller T., Jindrich J., Kahle M., Sedlak D., et al. Probes & Drugs portal: an interactive, open data resource for chemical biology. Nat Methods. 2017; 14: 759-60.
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13: 2498-504.
Li X., Lu R., Liu P., Zhu Z. Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification. J Supercomput. 2022; 78: 14846-65.
Saravi B., Lang G., Ülkümen S., Burchard T., Weihrauch V., Patzelt S., et al. The tissue renin-angiotensin system (tRAS) and the impact of its inhibition on inflammation and bone loss in the periodontal tissue. Eur Cell Mater. 2020; 40: 203-26.
Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M., et al. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015; 10: e0134601.
Lin E.C., Chiang Y.C., Lin H.Y., Tseng S.Y., Hsieh Y.T., Shieh J.A., et al. Unraveling the Link between Periodontitis and Coronavirus Disease 2019: Exploring Pathogenic Pathways and Clinical Implications. Biomedicines. 2023; 11: 2789.
Rubio M.C., Lewin P.G., De la Cruz G., Sarudiansky A.N., Nieto M., Costa O.R., et al. Effect of angiotensin-converting enzyme inhibitors on vascular endothelial function in hypertensive patients after intensive periodontal treatment. Acta Odontol Latinoam. 2016; 29: 60-7.
Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M., et al. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015; 10: e0134601.
Saravi B., Lang G., Ülkümen S., Burchard T., Weihrauch V., Patzelt S., et al. The tissue renin-angiotensin system (tRAS) and the impact of its inhibition on inflammation and bone loss in the periodontal tissue. Eur Cell Mater. 2020; 40: 203-26.
Pasini A.F., Garbin U., Nava M.C., Stranieri C., Pellegrini M., Boccioletti V., et al. Effect of sulfhydryl and non-sulfhydryl angiotensin-converting enzyme inhibitors on endothelial function in essential hypertensive patients. Am J Hypertens. 2007; 20: 443-50.
Yang Y., Walker T.M., Kouchaki S., Wang C., Peto TEA, Crook D.W., et al. An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction. Brief Bioinform. 2021; 22: bbab299.
Jiang Z., Lu Y., Liu Z., Wu W., Xu X., Dinnyés A, et al. Drug resistance prediction and resistance genes identification in Mycobacterium tuberculosis based on a hierarchical attentive neural network utilizing genome-wide variants. Brief Bioinform. 2022; 23: bbac041.
Dong Z., Zhang H., Chen Y., Payne PRO, Li F. Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling. Cancers (Basel). 2023; 15: 4210.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Pradeep K. Yadalam, Carlos M. Ardila.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
ODOVTOS - Int. J. Dent. Sc. endorses CC BY-NC-SA
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms. CC BY-NC-SA includes the following elements:
BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
SA: Adaptations must be shared under the same terms.