Evaluación In Vitro de los cambios de color en materiales CAD/CAM debido al envejecimiento prolongado por exposición al agua
DOI:
https://doi.org/10.15517/kyea6q06Palabras clave:
Bloques CAD/CAM; Estabilidad del color; Decoloración; Sistemas de pulido; Espectrofotometría; Envejecimiento en agua; Materiales dentales.Resumen
El objetivo de este estudio fue examinar la decoloración en materiales CAD/CAM utilizados en odontología tras cuatro años de contacto con agua, que constituye el medio al que están más expuestos en la cavidad oral. Se utilizaron tres bloques CAD/CAM de resina de color A2 (Cerasmart, Coltene Brilliant Crios y Shofu Block HC). Se prepararon un total de 180 especímenes, 60 de cada material, con un espesor de 2 mm. Posteriormente, cada material se dividió en tres grupos diferentes según los sistemas de pulido aplicados (Coltene Diatech, Sof-Lex Diamond, Identoflex Diamond Ceramic), siguiendo las recomendaciones de los fabricantes (n=20). La decoloración de los materiales, colocados sobre un fondo blanco y bajo luz natural, se midió al inicio y después de haber sido almacenados en agua destilada durante cuatro años, utilizando el espectrofotómetro VITA Easyshade V. Todos los datos obtenidos se analizaron mediante las pruebas de normalidad de Kolmogorov-Smirnov y Shapiro-Wilk. Tras el proceso de envejecimiento en agua, no se encontraron diferencias estadísticamente significativas entre los grupos de materiales CAD/CAM Cerasmart (p=1.51; p>0.05) y Shofu (p=0.95; p>0.05) al utilizar los tres sistemas de pulido. Se encontró una diferencia estadísticamente significativa entre todos los grupos de sistemas de pulido del material CAD/CAM Coltene (p=0.00). Todos los materiales CAD/CAM mostraron cambios de color superiores al umbral de perceptibilidad ∆E00≤0.8 tras cuatro años de envejecimiento en agua destilada. Los bloques CAD/CAM de Cerasmart (Coltene ∆E00=1.33, Sof-lex ∆E00=1.43, Identoflex ∆E00=1.69) presentaron cambios de color por debajo del umbral de aceptabilidad ∆E00≤1.8 en todos los grupos en los que se aplicaron diferentes sistemas de pulido, mientras que los bloques de Coltene (Coltene ∆E00=3.7, Sof-lex ∆E00=3.81, Identoflex ∆E00=4.69) y Shofu (Coltene ∆E00=2.33, Sof-lex ∆E00=1.74, Identoflex ∆E00=1.91) mostraron cambios de color superiores al valor de aceptabilidad.
Descargas
Referencias
Ruse N.D., Sadoun M.J. Resin-composite blocks for dental CAD/CAM applications. J Dent Res 2014; 93 (12): 1232-4.
Seghi R.R., Denry I.L., Rosenstiel S.F. Relative fracture toughness and hardness of new dental ceramics. J Prosthet Dent 1995; 74 (2): 145-50.
Nguyen J.F., Migonney V., Ruse N.D., Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater 2012; 28 (5): 529-34.
Belli R., Geinzer E., Muschweck A., et al. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater 2014; 30 (4): 424-32.
Ghazal M., Kern M. Wear of denture teeth and their humanenamel antagonists. Quintessence Int 2010; 41(2): 157-63
Acar O., Yilmaz B., Altintas S.H., Chandrasekaran I., Johnston W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J Prosthet Dent 2016; 115 (1): 71-5.
Wang F., Takahashi H., Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent 2013; 110 (1): 14-20.
Chaiyabutr Y., Kois J.C., LeBeau D., et al. Effect of abutment tooth color, cement color, and ceramic thickness on the resulting optical color of a CAD/ CAM glass-ceramic lithium disilicate reinforced crown. J Prosthet Dent 2011; 105 (2): 83-90.
Cavalcanti A.N., Mitsui F.H.O., Ambrosano G.M.B., Marchi G.M. Influence of adhesive systems and flowable composite lining on bond strength of class II restorations submitted to thermal and mechanical stresses. J Biomed Mater Res B Appl Biomater. 2007; 80 (1): 52-8.
Nikaido T., Kunzelmann K.H., Chen H., Ogata M., Harada N., Yamaguchi S., Cox C.F., Hickel R., Tagami J. Evaluation of thermal cycling and mechanical loading on bond strength of a self-etching primer system to dentin. Dent Mater. 2002; 18 (3): 269-75.
Kovuturk A.E., Kusgoz A., Ulker M., Yeşilyurt C. Effects of mechanical and thermal aging on microleakage of different fissure sealants. Dent Mater J. 2008; 27 (6): 795-801.
Morresi A.L., Amario M.D.’, Capogreco M., Gatto R., Marzo G., Arcangelo C. D’,Monaco A. Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater. 2014; 29: 295-308.
Attia A., Abdealaziz K., Freitag S., Kern M. Fracture load of composite resin and feldspathic all-ceramic CAD/CAM crowns. J Prosthet Dent, 2006; 95 (2): 117-23.
Gruber S., Kamnoedboon P., Ozcan M., Srinivasan M. CAD/CAM complete denture resins: an in vitro evaluation of color stability. J Prosthodont. 2001; 30 (5): 430-439.
Egilmez F., Ergun G., Cekic-Nagas I., Vallittu P.K., Lassilla L.V.J. Does artificial aging affect mechanical properties of CAD/CAM composite materials. J Prosthodont Res. 2018; 62 (1): 65-74.
Ilie N. Altering of optical and mechanical properties in high- translucent CAD-CAM resin composites during aging. J Dent. 2019; 85: 64-72.
Porojan L., Toma F.R., Bîrdeanu M.I., Vasiliu R.D., Utu ID, Matichescu A. Surface characteristics and color stability of dental PEEK related to water saturation and thermal cycling. Polymers (Basel). 2022; 14 (11): 2144.
Bollen C.M., Lambrechts P., Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997; 13 (4): 258-69.
Yilmaz C., Korkmaz T., Demirkoprulu H., Ergun G., Ozkan Y. Color stability of glazed and polished dental porcelains. J Prosthodont 2008; 17 (1): 20-4.
de Oliveira A.L., Botta A.C., Campos J.A., Garcia P.P. Effects of immersion media and repolishing on color stability and superficial morphology of nanofilled composite resin. Microsc Mikroanal 2014; 20 (4): 1234-9.
Fontes S.T., Fernandez M.R., de Moura C.M., Meireles S.S. Color stability of a nanofill composite: effect of different immersion media. J Appl Oral Sci 2019; 17 (5): 388-91.
Erdemir U., Yildiz E., Eren M.M. Effects of sports drinks on color stability of nanofilled and mycrohybrid composites after long-term immersions. J Dent 2012; 40 Suppl 2: e55-63.
Palmer D.S., Barco M.T., Billy E.J. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent. 1992; 67 (3): 325-7.
Alp G., Subasi M.G., Johnston W.M., et al. Effect of surface treatments and coffee thermal cycling on the color and translucency of CAD-CAM monolithic glass-ceramic. J Prosthet Dent. 2018; 120 (2): 263-268.
Vasiliu R.D., Porojan S.D., Birdeanu M.I., et al. Effect of thermal cycling, surface treatments and microstructure on the optical properties and roughness of CAD-CAM and heat-pressed glass ceramics. Materials (Basel). 2020; 13 (2): 381.
Archegas L.R., Freire A., Vieira S., et al. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing. J Dent. 2011; 39 (11): 804-10.
Shiozawa M., Tsuchida Y., Suzuki T., Takahashi H. Discoloration of fiber-reinforced composite resin disc for computer-aided design/computer aided manufacturing after immersion in coffee and cury solutions. Dent Mater J 2023; 42 (1): 64-71.
Al-Angari N.S., Quwayhis S., Almayouf N., Meaigel S., Aldahash A., Al-Angari. Effect of staining and whitening systems on color stability of computer aided design/computer aided manufacturing lithium disilicate glass ceramic. Saudi Dent J 2023; 35 (4): 359-364.
Luo M.R., Cui G., Rigg B. The development of the CIE 2000 color-difference formula: CIEDE2000. Color Res Appl 2001; 26: 340-350.
Paravina R.D., Pérez M.M., Ghinea R. Acceptability and perceptibility thresholds in dentistry: a comprehensive review of clinical and research applications. J Esthet Restor Dent. 2019; 31 (2): 103-112.
Farahat D.S., El-Wassefy N.A. Effects of food-simulating solutions on the surface properties of two CAD/CAM resin composites. J Clin Exp Dent. 2022; 14 (10): e782-e790.
Badra V.V., Faraoni J.J., Ramos R.P., Palma-Dibb R.G. Influence of different beverages on the microhardness and surface roughness of resin composites. Oper Dent. 2005; 30 (2): 213-9.
Yap A.U., Tan D.T., Goh B.K., Kuah H.G., Goh M. Effect of food-simulating liquids on the flexural strength of composite and polyacid-modified composite restoratives. Oper Dent. 2000; 25 (3): 202-8.
Papathanasiou I., Zinelis S., Papavasiliou G., Kamposiora P. Effect of aging on color, gloss and surface roughness of CAD/CAM composite materials. J Dent 2023;130.
Alharthi R., Alqahtani A.R., Alshehri A.M., Almalki A., Abozaed H.W., Hussein E.M.R., Soliman T.A. Effect of Thermal Aging on Color Stability and Mechanical Properties of High-Density CAD/CAM Polymers Utilized for Provisional Restorations. J Funct Biomater. 2025; 16 (6): 223.
Mourouzis P., Tsiyeli A., Tsetseli P., Gogos C., Tolidis K. Impact of erosion and aging simulation on chairside materials. Microsc Res Tech. 2023; 86 (8): 943-954.
Zenthöfer A., Cabrera T., Corcodel N., Rammelsberg P., Hassel A.J. Comparison of the Easyshade compact and advance in vitro and in vivo. Clin Oral Investig. 2013; 18 (5): 1473-9.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Elif İ. Sancak, Selen Bozkaya Bilgin, Neslihan Tekçe, Kübra Kavram Sarıhan.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
ODOVTOS - Int. J. Dent. Sc. endorses CC BY-NC-SA
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms. CC BY-NC-SA includes the following elements:
BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
SA: Adaptations must be shared under the same terms.



