Specializations of families of curves of degree 4 in algebraic geometry

Authors

  • Andrés Piedra Universidad Autónoma de Guerrero, Escuela Superior de Matemáticas No. 2, Guerrero, México Author

DOI:

https://doi.org/10.15517/bdphz044

Keywords:

Chow variety, Specialization, Hilbert scheme

Abstract

The objective of this review article is to synthesize and present, in a detailed manner, the technique of specialization of curves. Specifically, we review and analyze key examples on how certain curves of degree 4 and arithmetic genus 0 (parametrized by the Hilbert scheme Hilb4m+1(ℙ3)) can transform or degenerate into other curves. The computational calculation procedure is detailed and illustrated through the use of the Macaulay2 software. Finally, the utility of specializations for explicitly describing and classifying the irreducible components of Hilbert schemes and their corresponding Chow varieties is evaluated. The technique of specialization of families of curves has established itself as a powerful and rigorous method in algebraic geometry. By providing a well-defined stratification diagram, this tool allows for a precise classification of curves and an understanding of the connectivity of the components of the Hilbert scheme.

Downloads

Download data is not yet available.

References

[1] D. Chen, On the dimension of the Hilbert scheme of curves. Mathematical Research Letters 16(2009), no. 6, 941-954. DOI: 10.4310/mrl.2009.v16.n6.a3

[2] D. Chen, I. Cozcun y S. Nollet, Hilbert scheme of a pair of codimension two linear subspaces. Communications in Algebra 39(2011), no. 8, 3021-3043. DOI: 10.1080/00927872.2010.498396

[3] D. Cox, J. Little y D. O’Shea, Using algebraic geometry. Springer New York, New York, 1998. DOI: 10.1007/978-1-4757-6911-1

[4] D. Cox, J. Little y D. O’Shea, Ideals, varieties, and algorithms. 3rd. Springer Nature Switzerland, Cham, 2025. DOI: 10.1007/978-3-031-91841-4

[5] D. Eisenbud, Commutative algebra with a view toward algebraic geometry. Springer New York, New York, 1995. DOI: 10.1007/978-1-4612-5350-1

[6] D. Eisenbud, D. Grayson, M. Stillman y B. Sturmfels, eds., Computations in algebraic geometry with Macaulay 2. Springer New York, New York, 2002. DOI: 10.1007/978-3-662-04851-1

[7] D. Eisenbud y J. Harris, The geometry of schemes. Springer New York, New York, 2000. DOI: 10.1007/b97680

[8] D. Eisenbud y J. Harris, 3264 and all that: a second course in algebraic geometry. Cambridge University Press, Cambridge, 2013. DOI: 10.1017/CBO9781139062046

[9] D. R. Grayson y M. E. Stillman, Macaulay2, a software system for research in algebraic geometry. Sistema de Software. 2002.

[10] G.-M. Greuel, C. Lossen y E. Shustin, Geometry of families of nodal curves on the blown-up projective plane. Transactions of the AmericanMathematical Society 350(1998), no. 1. DOI: 10.1090/S0002-9947-98-02055-8

[11] G.-M. Greuel, C. Lossen y E. Shustin, Introduction to singularities and deformations. Springer Berlin, Berlin, 2007. DOI: 10.1007/3-540-28419-2

[12] J. Harris, Algebraic geometry: a first course. Springer New York, New York, 1992. DOI: 10.1007/978-1-4757-2189-8

[13] R. Hartshorne, Algebraic geometry. Springer New York, New York, 1977. DOI: 10.1007/978-1-4757-3849-0

[14] R. Hartshorne, Deformation theory. Springer New York, New York, 2010. DOI: 10.1007/978-1-4419-1596-2

[15] Y.-H. A. Lee, The Hilbert schemes of curves in ℙ3. Tesis doct. Harvard University, (2000).

[16] C. Lozano, Curvas algebraicas y la pregunta de Halphen. Miscelánea Matemática 16(2016), 1-15.

[17] M. Maican, Moduli of space sheaves with Hilbert polynomial 4m + 1. Canadian Mathematical Bulletin 61(2017), no. 2, 328-345. DOI: 10.4153/cmb-2017-030-4

[18] D. Munford, J. Fogarty y F. Kirwan, Geometric Invariant Theory. 3rd. Springer-Verlag Berlin, 1994.

[19] S. Nollet, The Hilbert schemes of degree three curves. Annales Scientifiques de l’ École Normale Supérieure 139(1997), no. 2, 367-384. DOI: 10.1016/S0012-9593(97)89925-9

[20] S. Nollet y E. Schlesinger, Hilbert schemes of degree four curves. Compositio Mathematica 139(2003), no. 3, 169-196. DOI: 10.1023/b:comp.0000005083.20724.cb

[21] A. Piedra, A partial description of the Chow variety of 1-cycles of degree 3 in ℙ3. Boletín de la Sociedad Matemática Mexicana 25(2019), 21-51. DOI:

10.1007/s40590-017-0182-6

[22] R. Piene y M. Schlessinger, On the Hilbert scheme compactification of the space of twisted cubics. American Journal of Mathematics 107(1985), no. 4, 761-774. DOI: 10.2307/2374355

[23] P. J. H. Rizzo, Morfismos de Abel, series lineales y sus límites sobre curvas. Revista Colombiana de Matemáticas 51(2017), no. 2, 119-152. DOI: 10.15446/recolma.v51n2.70895

[24] D. Rydh, Families of cycles and the Chow scheme. Tesis doct. KTH Royal Institute of Technology, (2008).

[25] I. R. Shafarevich, Basic algebraic geometry. 2nd. Springer Berlin, Berlin, 1994. DOI: 10.1007/978-3-642-57908-0

[26] I. R. Shafarevich, Basic algebraic geometry I: varieties in projective space. 3rd. Springer Berlin, Berlin, 1994. DOI: 10.1007/978-3-642-37956-7

[27] K. E. Smith, L. Kahanpää, P. Kekäläinen y W. Traves, An invitation to algebraic geometry. 1st. Springer New York, New York, 1998. DOI: 10.1007/978-1-4757-4497-2

[28] W. V. Vasconcelos, Computational methods in commutative algebra and algebraic geometry. 1st. Springer Berlin, Berlin, 1998.

Downloads

Published

2026-01-29

How to Cite

Specializations of families of curves of degree 4 in algebraic geometry. (2026). Revista De Matemática: Teoría Y Aplicaciones, 33(1), 1-20. https://doi.org/10.15517/bdphz044