Extension of an operad structure defined on a sub-S-modules
DOI:
https://doi.org/10.15517/9na6rv61Keywords:
Operads, Colimits, Differential graded modules, Polynomial operadsAbstract
This article presents a construction in the category of symmetrical operads in differential graded modules, which takes an operad defined in a sub S -module and extends it to an operad, whose underlying S -module includes the original. We call this the polynomial operad. This construction depends on the existence of colimits on the category of operads so a detailed review of this result is included.
Downloads
References
[1] B. Fresse, Homotopy of operads & Grothendiek-Teichmüller groups. unpublished. 2016. doi: 10.1090/SURV/217.1
[2] J. L. Loday y B. Vallette, Algebraic operads. Grundlehren der mathematischen Wissenschaften. Springer, 2012. doi: 10.1007/978-3-642-30362-3
[3] S. Mac Lane, Categories for the working mathematician. 2.a ed. Springer, 1998. doi: 10.1007/978-1-4757-4721-8
[4] J. P. May, The geometry of iterated loop spaces. Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 1972. doi: 10.1007/BFb0067491
[5] A. Prouté, Sur la transformation d’Eilenberg-Maclane. C. R. Acad. Sc. Paris 297(1983), 193-194. url: www. researchgate . net /publication / 266687547 Sur la transformation d’Eilenberg-Mac Lane.
[6] A. Prouté, Sur la diagonal d’Alexander-Whitney. C. R. Acad. Sc. Paris 299(1984), 391-392. url: www.researchgate.net/publication/267132394 Sur la diagonale d’Alexander-Whitney On the Alexander-Whitney diagonal.
[7] J. Sánchez-Guevara, About E-infinity structures in L-Algebras. Tesis doct. Paris: Université Paris VII, (2016). url: www.theses.fr/2016USPCC204.
[8] J. Sánchez-Guevara, E-infinity coalgebra structure on chain complexes with integer coefficients. Revista Colombiana de Matem´aticas 55(2021), 197-203. doi: 10.15446/recolma.v55n2.102690
[9] J. Sánchez -Guevara, Operads libres sobre módulos diferenciales graduados. Revista de Matemática: Teoría y Aplicaciones 29(2021), no. 1, 19-37. doi: 10.15517/rmta.v29i1.41404
[10] J. D. Stasheff, Homotopy associativity of H-Spaces. I. Transactions of the American Mathematical Society 108(1963), no. 2, 275-292. doi: 10.2307/1993608
[11] J. D. Stasheff, Homotopy associativity of H-Spaces. II. Transactions of the American Mathematical Society 108(1963), no. 2, 293-312. doi: 10.2307/ 1993609
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jesús Sánchez-Guevara (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista de Matemática: Teoría y Aplicaciones by Universidad de Costa Rica is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.