Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 14 No. 14 (2024): Enero - Diciembre 2024

Use of sargassum and other organic substitutes in the construction industry. A review

DOI:
https://doi.org/10.15517/mym.v14i1.56675
Submitted
September 8, 2025
Published
2025-09-08

Abstract

Currently, sargassum, due to the large quantities that have arrived on the coasts of Mexico and other parts of the world, has become an environmental, economic and health problem, which makes its study important to provide value. Sargassum has been used for the production of biofuels and bioremediation, however, to the large amount of this organic material, the construction industry has used it in its raw state as a cementitious substitute. The objective of this article is to know the potential use of sargassum ash as a cementitious substitute, comparing it with various organic biomasses that have been used for the same purpose, for which a bibliographic review of organic biomasses, their characteristics, substitution percentages has been carried out. and its application. The above will provide knowledge of the properties that ash must contain for its application either in mortars or pastes that improve long-term durability, to advance sustainable construction.

References

  1. Ahmad M.R., Chen B, Duan H. (2020). Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Science of the Total Environment. 1-13.
  2. Akhtar A., Sarmah A. (2018). Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Science of the Total Environment. 408-416.
  3. Akhtar A., Sarmah A. (2018a). Strength improvement of recycled aggregate concrete through silicon rich char derived from organic waste . Journal of Cleaner Production. 411-423
  4. American Society of Testing Materials ASTM C-618-17a. (2017). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete,.
  5. Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691.
  6. Asdrubali F., D’Alessandro F,. Schiavoni S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies. 4 1-17. https://doi.org/10.1016/j.susmat.2015.05.002
  7. Barron, A. (2010). Hydration of Portland Cement [WWW Document]. OpenStax-CNX Modul. m16447. http://cnx.org/contents/Lbv3xcBF@11/Hydration-of-Portland- Cement#eip1411
  8. Busch, T, Johnson, M, Pioch, T. (2022). Corporate carbon performance data: Quo vadis? Journal Ind Ecol. 26: 350– 363. https://doi.org/10.1111/jiec.13008
  9. Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, A., ́ Hernández-Gonzalez, ́ M.C., Pereda, S.V., Gomez-Pinchetti, J.L., Golberg, A., Tadmor-Shalev, N., Critchley, A.T. (2017). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52, 391–406. https://doi.org/10.1080/09670262.2017.1365175.
  10. Cabanillas-Teran, N., Hernández-Arana, H., Ruiz-Zárate, M., Vega-Zepeda, A. Y Sanchez-Gonzalez, A. (2019). Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 7: e7589. https://doi.org/10.7717/peerj.7589.
  11. Castillo, D., Cruz, J. C., Trejo-Arroyo, D. L., Muzquiz, E. M., Zarhri, Z., Gurrola, M. P., & Vega-Azamar, R. E. (2022). Characterization of poultry litter ashes as a supplementary cementitious material. Case Studies in Construction Material. 17. https://doi.org/10.1016/j.cscm.2022.e01278
  12. Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. (2016). Production and utilization of biochar: A review. J. Ind. Eng. Chem. 40, 1–15.
  13. Chahbi M., Mortadi A., El Moznine R., Monkade M., Zaim S., Nmila R. & Rchide H. (2022) A new approach to investigate the hydration process and the effect of algae powder on the strength properties of cement paste. Australian Journal of Mechanical Engineering 1-10.
  14. Chávez V., Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Francisco, V.; Estévez, M.; Celis, L.B.; Monroy-Velázquez, L.V.; Leal-Bautista, R.; Álvarez-Filip, L.; García-Sánchez, M.; Masia, L.; Silva, R. (2020). Massive Influx of Pelagic Sargassum spp. on the Coast if the Mexican Caribbean 2014-2020: Challenges and Opportunities. Water 1-24.
  15. Comité ACI 116. (s.f.). (2000). Terminología del cemento y hormigón.
  16. Cosentino I.,Restucccia L., Ferro G. Tulliani J. (2019). Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theoretical and Applied Fracture Mechanics. 1-10. https://doi.org/10.1016/j.tafmec.2019.102261
  17. Desrochers, Anne, Cox, Shelly-Ann, Oxenford, Hazel A., van Tussenbroek, Brigitta I. (2020a). Sargassum Uses Guide: A Resource for Caribbean Researchers, Entrepreneurs and Policy Makers. CERMES Technical Report No. 97 Special Edition.
  18. Desrochers, Anne, Cox, Shelly, Oxenford, Hazel, Van Tussenbroek, Brigitta. (2020b). Sargassum uses guide: a resource for caribbean researchers, entrepreneurs and policy makers lead. Food and Agriculture Organization of the United Nations (FAO) Produced (97), 100.
  19. Fernández,F, C. J. Boluda, J. Olivera, L. A. Guillermo, B. Gómez, E. Echavarría, A. M. Gómez. (2017). Análisis elemental prospectivo de la biomasa algal acumulada en las costas de la republica dominicana durante 2015. Centro Azucar 44 11-22.
  20. Freestone, D., Roe, H., Laffoley, D., Morrison, K., Rice, J., Inniss, L., Trott, T.M. (2017). Sargasso Sea. In: United Nations (Ed.), The First Global Integrated Marine Assessment. Cambridge University Press, Cambridge, pp. 893–898. https://doi.org/10.1017/9781108186148.060.
  21. Galán-Marín, C., Rivera-Gómez, C., Petric, J. (2010). Clay-based composite stabilized with natural polymer and fibre. Construct. Build. Mater. 24 (8), 1462–1468. https://doi.org/10.1016/j.conbuildmat.2010.01.008.
  22. Gaurav, N., Sivasankari, S., Kiran, G., Ninawe, A., Selvin, J. (2017). Utilization of bioresources for sustainable biofuels: a Review. Renew. Sustain. Energy Rev. 73, 205–214. https://doi.org/10.1016/j.rser.2017.01.070.
  23. Gupta S., Ewi-Kua H. (2020a). Application of rice husk biochar as filler in cenosphere modified mortar: Preparation, characterization and performance under elevated temperature. Construction and Building Materials. 1-16. https://doi.org/10.1016/j.conbuildmat.2020.119083
  24. Gupta S., Ewi-Kua H y Sze-Dai P. (2020b). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Construction and Building Materials. 1-16. https://doi.org/10.1016/j.conbuildmat.2019.117338
  25. Gupta S., Ewi-Kua H, Yang Low C. (2018a). Use of biochar as carbon sequestering additive in cement mortar. Cement and Concrete Composites. 1-63. https://doi.org/10.1016/j.cemconcomp.2017.12.009.
  26. Gupta S., Krishnan P., Kashani A y Ewi-Kua H. (2020c). Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Construction and Building Materials, 1-15.
  27. Gupta S., Palansooriya K., Dissanayake P., Ok Y. Y Ewi-Kua H. (2020). Carbonaceous inserts from lingocellulosic and non-lignocellulosic sources in cement mortar: Preparation conditions and its effect on hydration kinetics and physical properties. Construction and Building Materials. 1-17. https://doi.org/10.1016/j.conbuildmat.2020.120214
  28. Gupta S., Wei-Kua H., Pang S. Biochar-mortar composite: (2018) Manufacturing, evaluation and physical properties and economic viability. Construction and Building Materials. 874-889. https://doi.org/10.1016/j.conbuildmat..02.104
  29. Herráiz, Teresa Real, Julia, I., Herráiz, Real, Domingo, Laura Montalbán, Domingo, Francisco Carrión. (2016). Posidonia oceanica used as a new natural fibre to enhance the performance of asphalt mixtures. Construct. Build. Mater. 102, 601–612. https://doi.org/10.1016/j.conbuildmat.2015.10.193.
  30. Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. (2019). Waste to bioenergy: A review on the recent conversion technologies. BMC Energy, 1, 4.
  31. Li J., Zhang F., Muhammad Y., Liu Y., Wei Y. y Chen H. (2019). Fabrication and properties of wide temperature domain pavement seaweed modified bio-bitumen. Construction and Building Materials. 1-14. https://doi.org/10.1016/j.conbuildmat.2019.117079
  32. Maljaee H.,Madadi R., Paiva H., Tarelho L y Ferreira V. (2021). Incorporation of biochar in cementitious materials: A roadmap of biochar selection . Construction and Building Materials. 1-18. https://doi.org/10.1016/j.conbuildmat.2021.122757
  33. Martinez-Daranas B. y Suárez A. (2019). An overview of Cuban seagrasses. Bull Mar Sci. 94(2):269–282.
  34. Maurer, A.S., Neef, E.D., Stapleton, S. (2015). Sargassum accumulation may spell trouble for nesting sea turtles. Front. Ecol. Environ. 13, 394–395. https://doi.org/10.1890/1540-9295-13.7.394.
  35. Muthukrishnan S., Grupta S y Wei-Kua H. (2019). Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoretical and applied fracture mechanics. 1-46. https://doi.org/10.1016/j.tafmec.2019.102376
  36. Oh, D.-Y., Noguchi, T., Kitagaki, R., Park, W.-J. (2014). CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renew. Sust. Energ. Rev. 38:796–810. https://doi.org/10.1016/j.rser.2014.07.036.
  37. Park J.H., Kim Y.U., Jeon J., Yun B.Y., Kang Y y Kim S. (2021). Analysis of biochar-mortar composite as humidity control material to improve the building energy and hygrothermal performance. Science of the Total Environment. 1-8. https://doi.org/10.1016/j.scitotenv.2021.145552
  38. Restuccia L., y Ferro G. (2016). Promising low cost carbon-based materials to improve strength and toughness in cement composites. Construction and Building Materials. 1034-1043. https://doi.org/10.1016/j.conbuildmat.2016.09.101
  39. Roberts K.G., Gloy B.A., Joseph S., Scott N. y Lehmann J. (2010). Life cycle assessment of biochar systems: Estimating the energetic, economic and climate change potential. Environmental Science & Technology, 827-833. https://doi.org/10.1021/es902266r
  40. Rodier L., Bilba K. y Arsene M.A. (2019). Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Industrial Crops & Products. 1-9. https://doi.org/10.1016/j.indcrop.2019.111731.
  41. Rodríguez-Martínez, R.E., Medina-Valmaseda, A.E., Blanchon, P., Monroy-Velazquez, L.V., Almazan-Becerril, A., Delgado-Pech, B., Vasquez-Yeomans, L., Francisco, V., García-Rivas, M.C.(2019). Faunal mortality associated with massive beaching and decomposition of pelagic Sargassum. Mar. Pollut. Bull. 146, 201–205. https://doi.org/10.1016/j.marpolbul.2019.06.015.
  42. Roy K., Akhtar A., Sachdev S., Hsu M., Lim J. Y Sarmah A. (2017). Development and characterization of novel biochar-mortar composite utilizing waste derived pyrolysis biochar. International Journal of Scientific and Engineering Research. 8, 1912-1919.
  43. Salazar-Cruz, B.A., Zapien-Castillo, S., Hernández-Zamora, G., Rivera-Armenta, J.L. (2021). Investigation of the performance of asphalt binder modified by sargassum. Construct. Build. Mater. 271, 121876. https://doi.org/10.1016/j.conbuildmat.2020.121876
  44. Sargablock. (2021). SargaBLOCK. https://sargablock.com.mx/productos/
  45. Vassilev S.V., Baxter D. Andersen L y Vassileva C. (2010). An overview of the chemical composition of biomass. Fuel. 913-933. https://doi.org/10.1016/j.fuel.2009.10.022
  46. Vigneshwaran, S.; Sundarakannan, R.; John, K.M.; Joel Johnson, R.D.; Prasath, K.A.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M (2020). Recent advancement in the natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109
  47. Wang, S., Zhao, S., Uzoejinwa, B.B., Zheng, A., Wang, Q., Huang, J., Abomohra, A.E..(2020). A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers. Manag. 222, 113-253. https://doi.org/10.1016/j.enconman.2020.113253.
  48. Weber K., y Quickr P. (2018). Properties of biochar. Fuel. 217, 240-261. https://doi.org/10.1016/j.fuel.2017.12.054
  49. Wilkinson, S., Paul S., Ralph P., Hamdorf B., Navarro C., Laila K., Santana G. (2017) Exploring the feasibility of algae building technology in NSW. Procedia Engineering. 180, 1121-1130. https://doi.org/10.1016/j.proeng.2017.04.272
  50. Woolf D., Amonette, J., Street-Perrott, F. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56.
  51. Zavala-Arceo A., Cruz-Arguello J., Figueroa-Torres M.Z. y Yeladaqui-Tello A. (2019). Determinación de las propiedades térmicas de un mortero modificado con sargazo como material alternativo en construcción. Revista de Ingeniería Civil, 1-9. DOI:10.35429/JCE.2019.10.3.1.9
  52. Zhang Y., He M., Wang L., Yan J., Zhu X., Ok Y., Machtcherine V. y Tsang Daniel. (2022) Biochar as construction materials for achieving carbon neutrality. Biochar 1-25.

Similar Articles

1-10 of 24

You may also start an advanced similarity search for this article.