Conservation priority sites for reptiles in the Sierra Madre del Sur with a perspective for the future

Authors

  • Diana L. Fuentes-de la Rosa Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México. Author https://orcid.org/0000-0002-9224-8753
  • Daniel G. Ramírez-Arce Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México. / Posgrado en Ciencias Biológicas, Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México. Author https://orcid.org/0000-0002-3076-4373
  • Leticia M. Ochoa-Ochoa Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México. Author https://orcid.org/0000-0002-9846-4596

DOI:

https://doi.org/10.15517/rev.biol.trop..v73i1.60000

Keywords:

land use, Mexico, protected areas, spatial conservation, species distribution models, Zonation.

Abstract

Introduction: Reptiles are often overlooked when planning for conservation, as they are typically perceived as a persistent or tolerant group. Nonetheless, recent studies have shown their vulnerability. Identifying priority areas is crucial, and spatial prioritization is an essential analysis to optimize the scarce available resources for conservation. Furthermore, it is of the utmost importance to establish protected area networks that would keep their usefulness in the future, especially considering the enormous environmental changes that are currently occurring.

Objectives: To evaluate the performance of the current protected area network (PA) and to identify potential areas for expansion, considering their persistence in time.

Methods: We estimated species distributions for 177 reptiles on the Sierra Madre del Sur in Southeastern Mexico. The species were weighed according to their international conservation status, and future land use scenarios were incorporated to identify priority areas with Zonation software.

Results: We found coincidences between priority areas for reptiles and zones previously identified for other groups. However, most regions with top priority rankings remain unprotected, considering the current established PA. Federal PA protects the highest percentage of priority areas, followed by areas voluntarily dedicated to conservation and state PA. We emphasize conserving natural land uses since they are the only ones that constitute the highest priority zones for reptiles.

Conclusions: Our prioritization for reptile conservation entails efficient outcomes in terms of temporal permanence, amount of area to be protected, and coverage of species distribution, especially for small percentages of expansions to the current network of PA, making it an affordable proposal for implementation. Nonetheless, it is crucial to recognize that it is also important to consider social factors, possible conflicts of interest, and to evaluate the effectiveness of PA over time.

References

Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., … Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404–1420. https://doi.org/10.1111/ele.13535 DOI: https://doi.org/10.1111/ele.13535

Barnagaud, J. Y., Geniez, P., Cheylan, M., & Crochet, P. A. (2020). Climate overrides the effects of land use on the functional composition and diversity of Mediterranean reptile assemblages. Diversity and Distributions, 27(1), 50–64. https://doi.org/10.1111/ddi.13176 DOI: https://doi.org/10.1111/ddi.13176

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10–15. https://doi.org/10.1016/j.ecoinf.2013.11.002 DOI: https://doi.org/10.1016/j.ecoinf.2013.11.002

Berriozabal-Islas, C., Badillo-Saldaña, L. M., Ramírez-Bautista, A., & Moreno, C. E. (2017). Effects of habitat disturbance on lizard functional diversity in a tropical dry forest of the pacific coast of Mexico. Tropical Conservation Science, 10, 1940082917704972. https://doi.org/10.1177/1940082917704972 DOI: https://doi.org/10.1177/1940082917704972

Camarena-Hérnandez, A., Ochoa-Ochoa, L. M., & Yáñez-Arenas, C. (2023). Quantifying the effects of Anthropocene activities on Mexican endemic amphibians. Animal Conservation, 27(4), 449–460. https://doi.org/10.1111/acv.12918 DOI: https://doi.org/10.1111/acv.12918

Convention on Biological Diversity. (2010). The strategic plan for biodiversity 2011-2020 and the aichi biodiversity targets COP 10 decision X/2. Secretariat of the Convention on Biological Diversity.

Convention on Biological Diversity. (2021). First draft of the post-2020 global biodiversity framework. Secretariat Convention on Biological Biodiversity.

Cobos, M. E., Townsend-Peterson, A., Barve, N., & Osorio-Olvera, L. (2019). Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281. https://doi.org/10.7717/peerj.6281 DOI: https://doi.org/10.7717/peerj.6281

Comisión Nacional de Áreas Naturales Protegidas. (2018). 100 años de conservación en México: Áreas Naturales Protegidas de México I. March-Mifsut, E. I. Bustamante-Moreno (Eds.). SEMARNAT-CONANP.

Comisión Nacional de Áreas Naturales Protegidas. (2024). Comisión Nacional de Áreas Naturales Protegidas. https://www.gob.mx/conanp

Cordier, J. M., Aguilar, R., Lescano, J. N., Leynaud, G. C., Bonino, A., Miloch, D., Loyola, R., & Nori, J. (2021). A global assessment of amphibian and reptile responses to land-use changes. Biological Conservation, 253, 108863. https://doi.org/10.1016/j.biocon.2020.108863 DOI: https://doi.org/10.1016/j.biocon.2020.108863

Cortés-Gomez, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A., & Ladle, R. J. (2015). Ecological functions of neotropical amphibians and reptiles: A review. Universitas Scientiarum, 20(2), 229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna DOI: https://doi.org/10.11144/Javeriana.SC20-2.efna

Cox, N., Young, B. E., Bowles, P., Fernandez, M., Marin, J., Rapacciuolo, G., Böhm, M., Brooks, T. M., Hedges, S. B., Hilton-Taylor, C., Hoffmann, M., Jenkins, R. K. B., Tognelli, M. F., Alexander, G. J., Allison, A., Ananjeva, N. B., Auliya, M., Avila, L. J., Chapple, D. G., … Xie, Y. (2022). A global reptile assessment highlights shared conservation needs of tetrapods. Nature, 605, 285–290. https://doi.org/10.1038/s41586-022-04664-7 DOI: https://doi.org/10.1038/s41586-022-04664-7

de Miranda, E. B. P. (2017). The plight of reptiles as ecological actors in the tropics. Frontiers in Ecology and Evolution, 5(159), 1–21. https://doi.org/10.3389/fevo.2017.00159 DOI: https://doi.org/10.3389/fevo.2017.00159

Deans, R. A., & Chalcraft, D. R. (2017). Matrix context and patch quality jointly determine diversity in a landscape-scale experiment. Oikos, 126(6), 874–887. https://doi.org/10.1111/oik.03809 DOI: https://doi.org/10.1111/oik.03809

Di Minin, E., & Moilanen, A. (2014). Improving the surrogacy effectiveness of charismatic megafauna with well-surveyed taxonomic groups and habitat types. Journal of Applied Ecology, 51(2), 281–288. https://doi.org/10.1111/1365-2664.12203 DOI: https://doi.org/10.1111/1365-2664.12203

Diario Oficial de la Federación. (2024). Decreto por el que se declara área natural protegida, con la categoría de reserva de la biosfera, el sitio Sierra Tecuani, ubicado en los municipios de San Miguel Totolapan, Ajuchitlán del Progreso, Tecpan de Galeana, Coyuca de Catalán y Atoyac de Álvarez. Secretaría de Gobernación.

Doherty, T. S., Balouch, S., Bell, K., Burns, T. J., Feldman, A., Fist, C., Garvey, T. F., Jessop, T. S., Meiri, S., & Driscoll, D. A. (2020). Reptile responses to anthropogenic habitat modification: A global meta-analysis. Global Ecology and Biogeography, 29(7), 1265–1279. https://doi.org/10.1111/geb.13091 DOI: https://doi.org/10.1111/geb.13091

Elith, J., & Graham, C. H. (2009). Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32(1), 66–77. https://doi.org/10.1111/j.1600-0587.2008.05505.x DOI: https://doi.org/10.1111/j.1600-0587.2008.05505.x

Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 DOI: https://doi.org/10.1146/annurev.ecolsys.110308.120159

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x

Flores-Villela, O. A., & Ochoa-Ochoa, L. M. (2016). Estado de Conocimiento y Conservación de la Herpetofauna de la Sierra Madre del Sur. En I. Luna-Vega, D. Espinosa, & R. Contreras-Medina (Eds.), Biodiversidad de la Sierra Madre del Sur (pp. 367–380). Universidad Nacional Autónoma de México.

García-Llamas, P., Rangel, T. F., Calvo, L., & Suárez-Seoane, S. (2019). Linking species functional traits of terrestrial vertebrates and environmental filters: A case study in temperate mountain systems. Plos One, 14(2), e0211760. https://doi.org/10.1371/journal.pone.0211760 DOI: https://doi.org/10.1371/journal.pone.0211760

García-Padilla, E., DeSantis, D. L., Rocha, A., Johnson, J. D., Mata-Silva, V., & Wilson, L. D. (2020). Conserving the Mesoamerican herpetofauna: The most critical case of the priority level one endemic species. Amphibian & Reptile Conservation, 14(2), 73–132.

Gardner, T. A., Ribeiro-Júnior, M. A., Barlow, J., Ávila-Pires, T. C. S., Hoogmoed, M. S., & Peres, C. A. (2007). The value of primary, secondary, and plantation forests for a neotropical herpetofauna. Conservation Biology, 21(3), 775–787. https://doi.org/10.1111/j.1523-1739.2007.00659.x DOI: https://doi.org/10.1111/j.1523-1739.2007.00659.x

González-Fernández, A., Manjarrez, J., García-Vázquez, U., D’Addario, M., & Sunny, A. (2018). Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt. PeerJ, 6, e4618. https://doi.org/10.7717/peerj.4618 DOI: https://doi.org/10.7717/peerj.4618

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models with Applications in R. Cambridge University Press. DOI: https://doi.org/10.1017/9781139028271

Hernández-Rojas, A., Kessler, M., Krömer, T., Carvajal-Hernández, C., Weigand, A., & Kluge, J. (2018). Richness patterns of ferns along an elevational gradient in the sierra de Juárez, Oaxaca, Mexico: A comparison with Central and South America. American Fern Journal, 108(3), 76–94. https://doi.org/10.1640/0002-8444-108.3.76 DOI: https://doi.org/10.1640/0002-8444-108.3.76

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46, 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400 DOI: https://doi.org/10.1146/annurev-ecolsys-112414-054400

INEGI. (2016). Uso del suelo y vegetación, escala 1:250000, serie VI (continuo nacional). (Portal de Geoinformación, Sistema Nacional de Información sobre Biodiversidad). http://www.conabio.gob.mx/informacion/gis/

IPCC. (2023). Sections. In Core Writing Team, H. Lee, & J. Romero (Eds.), Climate change 2023: synthesis report. contribution of working groups i, ii and iii to the sixth assessment report of the intergovernmental panel on climate change (pp. 35–115). IPCC.

IUCN. (2023). The IUCN Red List of Threatened Species. Version 2023-1.

Johnson, J. D., Wilson, L. D., Mata-Silva, V., García-Padilla, E., & DeSantis, D. L. (2017). The endemic herpetofauna of Mexico: organisms of global significance in severe peril. Mesoamerican Herpetology, 4(3), 544–620.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122 DOI: https://doi.org/10.1038/sdata.2017.122

Koleff, P., Soberón, J., Arita, H. T., Dávila, P., Flores-Villela, O. A., Halffter, G., Lira-Noriega, A., Moreno, C. E., Moreno, E., Munguía, M., Murguía, M., Navarro-Sigüenza, A. G., Téllez, O., Ochoa-Ochoa, L. M., Peterson, T. A., & Rodríguez, P. (2008). Patrones de diversidad espacial en grupos selectos de especies. En J. Soberón, G. Halffter, & J. Llorente-Bousquets (Eds.), Capital Natural de México Vol. I. Conocimiento de la Biodiversidad México (pp. 323–364). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

Kukkala, A. S., & Moilanen, A. (2013). Core concepts of spatial prioritisation in systematic conservation planning. Biological Reviews, 88(2), 443–464. https://doi.org/10.1111/brv.12008 DOI: https://doi.org/10.1111/brv.12008

Lara-Resendiz, R. A., Galina-Tessaro, P., Pérez-Delgadillo, A. G., Valdez-Villavicencio, J. H., & Méndez-De la Cruz, F. R. (2019). Effects of climate change on a widely distributed thermophilic lizard (Dipsosaurus dorsalis): An ecophysiological approach. Revista Mexicana de Biodiversidad, 90, e902888. https://doi.org/10.22201/ib.20078706e.2019.90.2888 DOI: https://doi.org/10.22201/ib.20078706e.2019.90.2888

Larsen, F. W., Turner, W. R., & Mittermeier, R. A. (2015). Will protection of 17 % of land by 2020 be enough to safeguard biodiversity and critical ecosystem services? Oryx, 49(1), 74–79. https://doi.org/10.1017/S0030605313001348 DOI: https://doi.org/10.1017/S0030605313001348

Leavitt, D. J., & Fitzgerald, L. A. (2013). Disassembly of a dune-dwelling lizard community due to landscape fragmentation. Ecosphere, 4(8), 1–15. https://doi.org/10.1890/ES13-00032.1 DOI: https://doi.org/10.1890/ES13-00032.1

Lehtomäki, J., & Moilanen, A. (2013). Methods and workflow for spatial conservation prioritization using Zonation. Environmental Modelling and Software, 47, 128–137. https://doi.org/10.1016/j.envsoft.2013.05.001 DOI: https://doi.org/10.1016/j.envsoft.2013.05.001

Liu, C., Newell, G., & White, M. (2016). On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution, 6(1), 337–348. https://doi.org/10.1002/ece3.1878 DOI: https://doi.org/10.1002/ece3.1878

Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058 DOI: https://doi.org/10.1111/jbi.12058

Luis-Martínez, A., Sánchez García, A., Ávalos-Hernández, O., Salinas-Gutiérrez, J. L., Trujano-Ortega, M., Arellano-Covarrubias, A., & Llorente-Bousquets, J. (2020). Distribution and diversity of Papilionidae and Pieridae (Lepidoptera: Papilionoidea) in Loxicha Region, Oxaca, Mexico. Revista de Biología Tropical, 68(1), 139–155. https://doi.org/http://dx.doi.org/10.15517/rbt.v68i1.37587 DOI: https://doi.org/10.15517/rbt.v68i1.37587

Margules, C. R. & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243–253. https://doi.org/10.1038/35012251 DOI: https://doi.org/10.1038/35012251

Mendenhall, C. D., Frishkoff, L. O., Santos-Barrera, G., Pacheco, J., Mesfun, E., Quijano-Mendoza, F., Ehrlich, P. R., Ceballos, G., Daily, G. C., & Pringle, R. M. (2014). Countryside biogeography of Neotropical reptiles and amphibians. Ecology, 95(4), 856–870. https://doi.org/10.1890/12-2017.1 DOI: https://doi.org/10.1890/12-2017.1

Mendoza-Ponce, A., Corona-Núñez, O., Kraxner, F., & Estrada, F. (2020). Spatial prioritization for biodiversity conservation in a megadiverse country. Anthropocene, 32, 100267. https://doi.org/10.1016/j.ancene.2020.100267 DOI: https://doi.org/10.1016/j.ancene.2020.100267

Mendoza-Ponce, A., Corona-Núñez, R., Kraxner, F., Leduc, S. & Patrizio, P. (2018). Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Global Environmental Change, 53, 12–23. https://doi.org/10.1016/j.gloenvcha.2018.08.004 DOI: https://doi.org/10.1016/j.gloenvcha.2018.08.004

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x DOI: https://doi.org/10.1111/j.1600-0587.2013.07872.x

Moilanen, A., Anderson, B. J., Eigenbrod, F., Heinemeyer, A., Roy, D. B., Gillings, S., Armsworth, P. R., Gaston, K. J., & Thomas, C. D. (2011). Balancing alternative land uses in conservation prioritization. Ecological Applications, 21(5), 1419–1426. https://doi.org/https://doi.org/10.1890/10-1865.1 DOI: https://doi.org/10.1890/10-1865.1

Moilanen, A., Lehtinen, P., Kohonen, I., Jalkanen, J., Virtanen, E. A., & Kujala, H. (2022). Novel methods for spatial prioritization with applications in conservation, land use planning and ecological impact avoidance. Methods in Ecology and Evolution, 13(5), 1062–1072. https://doi.org/10.1111/2041-210X.13819 DOI: https://doi.org/10.1111/2041-210X.13819

Newbold, T., Bentley, L. F., Hill, S. L. L., Edgar, M. J., Horton, M., Su, G., Şekercioğlu, Ç. H., Collen, B., & Purvis, A. (2020). Global effects of land use on biodiversity differ among functional groups. Functional Ecology, 34(3), 684–693. https://doi.org/10.1111/1365-2435.13500 DOI: https://doi.org/10.1111/1365-2435.13500

Ochoa-Ochoa, L. M., & Ríos-Muñoz, C. A. (2019). Estimación de adecuabilidad de especies en ambientes antropizados desde el enfoque de modelado de nicho. En C. P. Ornelas-García, F. Álvarez, & A. Wegier (Eds.), Antropización: Primer análisis integral (pp. 345–361). IBUNAM-CONACYT.

Ochoa-Ochoa, L. M., Munguía, M., Lira-Noriega, A., Sánchez-Cordero, V., Flores-Villela, O., Navarro-Sigüenza, A., & Rodríguez, P. (2014). Spatial scale and β-diversity of terrestrial vertebrates in Mexico. Revista Mexicana de Biodiversidad, 85(3), 918–930. https://doi.org/10.7550/rmb.38737 DOI: https://doi.org/10.7550/rmb.38737

Ochoa-Ochoa, L. M., Urbina-Cardona, J. N., Vázquez, L. B., Flores-Villela, O., & Bezaury-Creel, J. (2009). The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians. Plos One, 4(9), e6878. https://doi.org/10.1371/journal.pone.0006878 DOI: https://doi.org/10.1371/journal.pone.0006878

Palmeirim, A. F., Farneda, F. Z., Vieira, M. V., & Peres, C. A. (2021). Forest area predicts all dimensions of small mammal and lizard diversity in Amazonian insular forest fragments. Landscape Ecology, 36, 3401–3418. https://doi.org/10.1007/s10980-021-01311-w DOI: https://doi.org/10.1007/s10980-021-01311-w

Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. Journal of Biogeography, 47(2), 315–325. https://doi.org/10.1111/jbi.13731 DOI: https://doi.org/10.1111/jbi.13731

Peterson, A. T., & Soberón, J. (2012). Integrating fundamental concepts of ecology, biogeography, and sampling into effective ecological niche modeling and species distribution modeling. Plant Biosystems- An International Journal Dealing with All Aspects of Plant Biology, 146(4), 789–796. https://doi.org/10.1080/11263504.2012.740083 DOI: https://doi.org/10.1080/11263504.2012.740083

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martinez-Meyer, E., Nakamura, M., & Bastos-Araújo, M. (2011). Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press. DOI: https://doi.org/10.23943/princeton/9780691136868.001.0001

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M., & Wilson, K. A. (2007). Conservation planning in a changing world. Trends in Ecology and Evolution, 22(11), 583–592. https://doi.org/10.1016/j.tree.2007.10.001 DOI: https://doi.org/10.1016/j.tree.2007.10.001

R Core Team. (2018). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing Vienna, Austria. https://www.R-project.org/.

Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B. G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M. T., Whittaker, R. J., & Fjeldså, J. (2019). Building mountain biodiversity: Geological and evolutionary processes. Science, 365(6458), 1114–1119. https://doi.org/10.1126/science.aax0151 DOI: https://doi.org/10.1126/science.aax0151

Ramírez-Albores, J. E., Bustamante, R. O., & Badano, E. I. (2016). Improved predictions of the geographic distribution of invasive plants using climatic niche models. Plos One, 11(5), e0156029. https://doi.org/10.1371/journal.pone.0156029 DOI: https://doi.org/10.1371/journal.pone.0156029

Ríos-Muñoz, C. A. & Espinosa-Martínez, D. V. (2019). ¿Qué es necesario considerar para utilizar de manera adecuada los modelos de nicho ecológico o modelos de distribución de especies?: cómo no caer en la tentación. Revista Latinoamericana de Herpetología, 02(01), 5–8. https://doi.org/10.22201/fc.25942158e.2019.1.89 DOI: https://doi.org/10.22201/fc.25942158e.2019.1.89

Ríos-Solís, J. A., Lavariega, M. C., García-Padilla, E., & Mata-Silva, V. (2022). Noteworthy records of freshwater turtles in Oaxaca, Mexico. Revista Latinoamericana de Herpetología, 4(2), 184–191. http://dx.doi.org/10.22201/fc.25942158e.2021.02.239 DOI: https://doi.org/10.22201/fc.25942158e.2021.02.239

Rovito, S. M., Parra-Olea, G., Lee, D., & Wake, D. B. (2012). A new species of Bolitoglossa (Amphibia, Caudata) from the Sierra de Juárez, Oaxaca, Mexico. ZooKeys, 185, 55–71. https://doi.org/10.3897/zookeys.185.1146 DOI: https://doi.org/10.3897/zookeys.185.1146

Sillero, N., Arenas-Castro, S., Enriquez-Urzelai, U., Gomes-Vale, C., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456, 109671. https://doi.org/10.1016/j.ecolmodel.2021.109671 DOI: https://doi.org/10.1016/j.ecolmodel.2021.109671

Simões, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L., & E. Cobos, M. (2020). General theory and good practices in ecological niche modeling: a basic guide. Biodiversity Informatics, 15(2), 67–68. https://doi.org/10.17161/bi.v15i2.13376 DOI: https://doi.org/10.17161/bi.v15i2.13376

Sinervo, B., Lara-Reséndiz, R. A., Miles, D. B., Lovich, J. E., Rosen, P. C., Gadsden, H., Castañeda-Gaytán, G., Tessaro, P. G., Luja, V. H., Huey, R. B., Whipple, A., Sánchez-Cordero, V., Rohr, J. B., Caetano, G., Santos, J. C., Sites, J. W., & Méndez de la Cruz, F. R. (2024). Climate change and collapsing thermal niches of desert reptiles and amphibians: Assisted migration and acclimation rescue from extirpation. Science of the Total Environment, 908, 168431. https://doi.org/10.1016/j.scitotenv.2023.168431 DOI: https://doi.org/10.1016/j.scitotenv.2023.168431

Sinervo, B., Méndez de la Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N., Gadsden, H., Ávila, J. L., Morando, M., De la Riva, I. J., Sepulveda, P. V., Duarte Rocha, C. F., Ibargüengoytía, N., Aguilar Puntriano, C., Massot, M., … Sites Jr. J. W. (2010). Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches. Science, 328(5980), 894–899. https://doi.org/10.1126/science.1184695 DOI: https://doi.org/10.1126/science.1184695

Soberón, J., Osorio-Olvera, L. & Peterson, T. (2017). Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad, 88(2), 437–441. https://doi.org/10.1016/j.rmb.2017.03.011 DOI: https://doi.org/10.1016/j.rmb.2017.03.011

Suazo-Ortuño, I., Ramírez-Bautista, A., & Alvarado-Díaz, J. (2023). Amphibians and Reptiles of Mexico: Diversity and Conservation. In R. W. Jones, & R. Pineda-López (Eds.), Mexican Fauna in the Anthropocene (pp. 105–127). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-17277-9_6

Uetz, P., Freed, P., Reyes, F. & Hošek, J. (2024). The reptile database. http://www.reptile-database.org/

Urbina-Cardona, J. N., Olivares-Pérez, M., & Reynoso, V. H. (2006). Herpetofauna diversity and microenvironment correlates across a pasture-edge-interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biological Conservation, 132(1), 61–75. https://doi.org/10.1016/j.biocon.2006.03.014 DOI: https://doi.org/10.1016/j.biocon.2006.03.014

Velasco, J. A., & González-Salazar, C. (2019). Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics, 51, 25–32. https://doi.org/10.1016/j.ecoinf.2019.02.005 DOI: https://doi.org/10.1016/j.ecoinf.2019.02.005

Vitt, L. J., & Caldwell, J. P. (2014). Herpetology: An Introductory Biology of Amphibians and Reptiles (4th Ed.). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-386919-7.00002-2

Published

2025-07-31