Combining environmental DNA metabarcoding and specimen collections to describe fish biodiversity in the Tukakas Bay, Colombian Caribbean
DOI:
https://doi.org/10.15517/4z83mm52Keywords:
Bio Expedition “Lamuuna Neimalu’u”; Wayuu indigenous communities; La Guajira desert; Colombian Caribbean; molecular taxonomyAbstract
Introduction: Tukakas Bay, located on the border between Colombia and Venezuela, is practically unknown in terms of its marine biodiversity. This lack of knowledge generated the need to carry out an expedition to evaluate the current state of its associated biodiversity. Objective: To describe for the first time fish biodiversity in Tukakas Bay through integrated sampling methodologies. Methods: We combined environmental DNA (eDNA) from seawater with observations and morphological methods, and subsequent mitochondrial DNA barcoding (COI, 16S) to describe fish biodiversity. Water samples for eDNA analysis were concentrated in four transects along the bay and processed in laboratory. Visual censuses were carried out through scuba diving and snorkelling, and fish were collected in 17 stations. Tissue samples were subtracted and preserved for DNA barcoding. Voucher specimens were fixed and preserved for taxonomy. Both specimens and tissue samples are part of reference collections at MHNMC, and their metadata are available in the public domain. Results: We identified 481 ASVs belonging to 95 species, 68 genera, and 52 families from eDNA, visual censuses, and morphology (including DNA barcoding). Detections made with eDNA included solitary species and represented 65 % of all identified fish taxa in Tukakas Bay, from which 15 species were also observed or collected. Specimen collections were effective for the creation of 45 DNA barcodes and 164 DNA sequences, and the confirmation of taxonomic assignations obtained by the other two methods. We improved taxonomic resolution for 20 % of the taxa by combining these three survey methods. Conclusion: Integrating eDNA metabarcoding approaches to traditional fish surveys significantly improves biodiversity assessments specially on remote areas.
References
Acero, P. A., Polanco, F. A., & Tavera, J. J. (2023). Checklist of Caribbean marine fishes of Colombia (Version 2.0) [Dataset]. Asociación Colombiana de Ictiólogos. https://doi.org/10.15472/430hyn
Aguirre-Pabón, J. C., Berdugo, G. O., & Narváez, J. C. (2022). Population structure and low genetic diversity in the threatened lebranche Mugil liza in the Colombian Caribbean. Fisheries Research, 256, 106485. https://doi.org/10.1016/J.FISHRES.2022.106485
Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4.
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16(1), 176–182. https://doi.org/10.1111/1755-0998.12428
Carneiro, M., & Martins, R. (2021). Destructive fishing practices and their impact on the marine ecosystem. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Life below water (pp.1–11). Springer. https://doi.org/10.1007/978-3-319-71064-8_10-1
Corpoguajira & Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis”. (2007). Caracterización de la zona costera del departamento de La Guajira: Informe técnico final [Technical Report]. Invemar.
Corpoguajira & Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis”. (2012). Atlas marino costero de La Guajira. Serie de Publicaciones Especiales de Invemar No. 27.
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.
Emslie, M. J., Cheal, A. J., MacNeil, M. A., Miller, I. R., & Sweatman, H. P. (2018). Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ, 6, e4886.
Escobar, R., Luna-Acosta, A., & Caballero, S. (2019). DNA barcoding, fisheries and communities: What do we have? Science and local knowledge to improve resource management in partnership with communities in the Colombian Caribbean. Marine Policy, 99, 407–413. https://doi.org/10.1016/j.marpol.2018.08.025
Gómez-Gaspar, A., & Acero, P. A. (2020). Comparación de las surgencias de la Guajira colombiana y del oriente venezolano. Boletín de Investigaciones Marinas y Costeras INVEMAR, 49(2), 131–172. https://doi.org/10.25268/bimc.invemar.2020.49.2.943.
Gómez-López, D., Díaz, C., Galeano, E., Muñoz, L., Millán, S., Bolaños, J., & García, C. (2014). Proyecto de actualización cartográfica del atlas de pastos marinos de Colombia: Sectores Guajira, Punta San Bernardo y Chocó. Extensión y estado actual (PRY–BEM–005–13, Convenio interadministrativo 2131068): Informe técnico final [Technical Report]. Fonade-MADS-Invemar.
Guardiola, M., Uriz, M. J., Taberlet, P. Coissac, E., Wangensteen, O., & Turon, X. (2015). Deep-Sea, deep-sequencing: Metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE, 10(10), e0139633. https://doi.org/10.1371/journal.pone.0139633
Guerra, W., Benjumea, L. A. C., & Madariaga, M. T. (2015). El mar cimarrón: Conocimientos sobre el mar, la investigación y la pesca entre los Wayuu. Museo Arqueológico Nacional Aruba.
Hajibabaei, M., Porter, T., Robinson, C., Baird, D. J., Shokralla, S., & Wright, M. T. (2019). Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples. PLoS ONE, 14(12), e0225409. https://doi.org/10.1371/journal.pone.0225409
Hallam, J., Clare, E. L., Iwan-Jones, J., & Day, J. J. (2021). Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environmental DNA, 3, 1247–1266. https://doi.org/10.1002/edn3.241
Ivanova, N. V., Zemlak, T. S., Hanner, R. H., & Herbert, P. D. N. (2007), Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7, 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
Jeunen, G. J., Knapp, M., Spencer, H. G., Lamare, M. D., Taylor, H. R., Stat, M., Bunce, M., & Gemmell, N. J. (2019). Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Molecular Ecology Resources, 19(2), 426–438. https://doi.org/10.1111/1755–0998.12982
Juárez-Hernández, L. G., & Sánchez-Vega, M. G. (2022). Comparison of fish assemblages recorded by visual census and video census. Revista de Biología Tropical, 70(1), 541–556. https://doi.org/10.15517/rev.biol.trop.2022.48420
Juhel, J. B., Utama, R. S., Marques, V., Vimono, I. B., Sugeha, H. Y., Laurent, K., Dejean, T., Mouillot, D., & Hocde, R. (2020). Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proceedings of the Royal Society B: Biological Sciences, 287(1930), 20200248. https://doi.org/10.1098/rspb.2020.0248
Kelly, R. P., Port, J. A., Yamahara, K. M., & Crowder L. B. (2014). Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE, 9(1), e86175. https://doi.org/10.1371/journal.pone.0086175
Logan, J., Young, M., Harvey, E., Schimel, A., & Lerodiaconou, D. (2017). Combining underwater video methods improves effectiveness of demersal fish assemblage surveys across habitats. Marine Ecology Progress Series, 582, 181–200. https://doi.org/10.3354/meps12326
Mathon, L., Marques, V., Mouillot, D., Albouy, C., Andrello, M., Baletaud, F., Borrero-Pérez, G. H., Dejean, T., Edgar, G. J., Grondin, J., Guerin, P. E., Hocdé, R., Juhel, J. B., Kadarusman, M. E., Mariani, G., McLean, M., Polanco, A. F., Pouyaud, L., Stuart-Smith, R. D., … Manel, S. (2022). Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proceedings of the Royal Society B: Biological Sciences, 289(1973), 20220162. https://doi.org/10.1098/rspb.2022.0162
McElroy, M. E., Dressler, T. L., Titcomb, G. C., Wilson, E. A., Deiner, K., Dudley, T. L., Eliason, E. J., Evans, N. T., Gaines, S. D., Lafferty, K. D., Lamberti, G. A., Li, Y., Lodge, D. M., Love, M. S., Mahon, A. R., Pfrender, M. E., Renshaw, M. A., Selkoe, K. A., & Jerde, C. L. (2020). Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Frontiers in Ecology and Evolution, 8, 276. https://doi.org/10.3389/fevo.2020.00276
Mendoza-Ureche, R., Quintero-Galvis, J. F., & Narváez-Barandica, J. C. (2019). Baja variabilidad y diferenciación genética poblacional en la “lisa”, Mugil incilis (Teleostei: Mugilidae) del Caribe colombiano. Revista de Biología Tropical, 67(3), 501–517. http://dx.doi.org/10.15517/rbt.v67i3.32262
Murcia-Riaño, M., Ricaurte-Villota, C., Ordóñez-Zúñiga, A., & Bastidas-Salamanca, M. (2017). Región 1: Sistema de La Guajira. In C. Ricaurte–Villota, & M. L. Bastidas Salamanca (Eds.), Regionalización oceanográfica: Una visión dinámica del Caribe (pp. 32–47). Serie de Publicaciones Especiales Invemar.
Oka, S. I., Doi, H., Miyamoto, K., Hanahara, N., Sado, T., & Masaki, M. (2020). Environmental DNA metabarcoding for biodiversity monitoring of a highly-diverse tropical fish community in a coral-reef lagoon: Estimation of species richness and detection of habitat segregation. Environmental DNA, 3(1), 55–69. https://doi.org/10.1002/edn3.132
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, E. B., Simpson, G. L., Solymos, P., Stevens, M. H., Szoecs, E., & Wagner, H. (2016). vegan: Community ecology package. Rpackage (Version 2.5‐2) [Software]. CRAN. https://CRAN.R‐project.org/package=vegan.
Palumbi, S. R. (1996) Nucleic acids II: the polymerase chain reaction. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular Systematics (pp. 205–247). Sinauer & Associates Inc.
Páramo, J., Quiñones, R. A., Ramírez, A., & Wiff, R. (2003). Relationship between abundance of small pelagic fishes and environmental factors in the Colombian Caribbean Sea: An analysis based on hydroacoustic information. Aquatic Living Resources, 16(3), 239–245. https://doi.org/10.1016/S0990-7440(03)00043-3
Polanco-Fernández, A., Marqués, V., Fopp, F., Juhel, J. B., Borrero-Perez, G., Cheutin, M. C., Dejean, T., Gonzales, J. D., Acosta, A., Hocde, R., Eme, D., Maire, E., Spescha, M., Valentini, A., Manel, S., Mouillot, D., Albouy, C., & Pellissier, L. (2020). Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environmental DNA, 3(1), 142–146. https://doi.org/10.1002/edn3.140.
Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., & Coissac, E. (2011). ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 39(21), e145. https://doi.org/10.1093/nar/gkr732
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. https://doi.org/10.1016/j.gecco.2019.e00547.
Stat, M., Huggett, M. J., Bernasconi, R., DiBattista, J. D., Berry, T. E., Newman, S. J., Harvey, E. S., & Bunce, M. (2017). Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Scientific Reports, 7(1), 12240. https://doi.org/10.1038/s41598–017–12501–5.
Stat, M., John, J., DiBattista, J. D., Newman, S. J., Bunce, M., & Harvey, E. (2018). Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conservation Biology, 33(1), 196–205. https://doi.org/10.1111/cobi.13183.
Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018). Environmental DNA for biodiversity research and monitoring (1st ed.). Oxford University Press.
Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183(1), 4–18. https://doi.org/10.1016/j.biocon.2014.11.019
Valdivia-Carrillo, T., Rocha-Olivares, A., Reyes-Bonilla, H., Domínguez-Contreras, J. F., & Munguia-Vega, A. (2021). Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Ecology and Evolution, 21(5), 1558–1574. https://doi.org/10.1111/1755-0998.13375
Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., Peroux, T., Crivelli, A. J., Olivier, A., Acqueberge, M., Le Brun, M., Møller, P. R., Willerslev, E., & Dejean, T. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 25(4), 929–942. https://doi.org/10.1111/mec.13428.
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA barcoding Australia's fish species. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 360(1462), 1847–1857. https://doi.org/10.1098/rstb.2005.1716
West, K. M., Stat, M., Harvey, E. S., Skepper, C. L., DiBattista, J. D., Richards, Z. T., Travers, M. J., Newman, S. J., & Bunce, M. (2020). eDNA metabarcoding survey reveals fine–scale coral reef community variation across a remote, tropical island ecosystem. Molecular Ecology, 29(6), 1069–1086. https://doi.org/10.1111/mec.15382.
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Revista de Biología Tropical

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 License (CC BY 4.0)
Attribution (BY) • (BY) You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).