Skip to main navigation menu Skip to main content Skip to site footer

Scientific Papers

Vol. 22 No. 40 (2020): Journal 40, December 2020-January 2021

Statistical analysis of road crashes at the district level for the greater metropolitan area

DOI:
https://doi.org/10.15517/sy8hxj77
Submitted
November 17, 2025
Published
2025-11-17

Abstract

Due to the constant increase in the number of road crashes that occur in the country, it was sought to determine the socio-economic characteristics of the population and the variables of land use related to the frequency of road crashes at the district level in the Greater Metropolitan Area (GAM). This will make possible to include road safety criteria in urban planning policies.

Statistical models of crash estimation were developed, using the negative binomial distribution based on the land use of the GAM. The socio-economic variables of the population and variables associated with the road network were included. The representative variables in each of the types of crashes analyzed were determined, such as the total population, and the estimation of expected crashes was performed for each of the districts under study. Additionally, the districts with the highest frequency were determined, where the Alajuela district stands out, which proved to be the most problematic. The districts of Heredia, Uruca, Hospital, San Nicolás, Río Segundo, among others, also resulted in significant excesses of crashes.

References

  1. Agüero-Valverde, J. (2016). Determinación de rutas con potencial de mejora utilizando funciones de desempeño de seguridad vial: caso de Costa Rica. Infraestructura Vial, 18(32), 39-52. DOI: 10.15517/iv.v18i32.29783
  2. Amoh-Gyimah, R., Sarvi, M. y Saberi, M. (2016). Investigating the effects of traffic, socioeconomic, and land use characteristics on pedestrian and bicycle crashes: a case study of Melbourne, Australia (No. 16-1931). En Transportation Research Board 95th Annual Meeting, Washington DC, United States.
  3. Caballero, F. (2011). Selección de modelos mediante criterios de información en análisis factorial. Aspectos teóricos y computacionales. (Tesis doctoral, Universidad de Granada). Recuperado de: https://hera.ugr.es/tesisugr/19964808.pdf
  4. Consejo de Seguridad Vial (2016). Datos de accidentes de Tránsito en la Gran Área Metropolitana periodo 2012-2014 [Fichero de datos sin publicar]. San José, Costa Rica.
  5. Fuentes, C. M. y Hernández, V. (2009). La estructura espacial urbana y la incidencia de accidentes de tránsito en Tijuana, Baja California (2003-2004). Frontera norte, 21(42), 109-138.
  6. Instituto Geográfico Nacional (2008). Hojas cartográficas de Uso de la Tierra en la Gran Área Metropolitana del Proyecto PRUGAM (1:10,000), San José Costa Rica. Recuperado de: https://www.mivah.go.cr/PRUGAM_Cartografia_Alfabetica.shtml
  7. Instituto Nacional de Estadística y Censos de Costa Rica (2011). Censo 2011 Distribución porcentual de los hogares por número de carencias críticas, según distrito [Fichero de datos]. Obtenido de http://www.inec.go.cr/pobreza-y-desigualdad/otros-metodos-de-pobreza
  8. Instituto Nacional de Estadística y Censos de Costa Rica (2014). Estadísticas demográficas. 2011-2025. Proyecciones nacionales: Población total proyectada al 30 de junio por grupos de edades, según provincia, cantón, distrito y sexo [Fichero de datos]. Recuperado de http://www.inec.go.cr/poblacion/estimaciones-y-proyecciones-de-poblacion
  9. Ministerio de Obras Públicas y Transportes (2013). Anuario De Información De Tránsito 2012. Recuperado de: http://repositorio.mopt.go.cr:8080/xmlui/bitstream/handle/123456789/399/388-4.pdf?sequence=1&isAllowed=y
  10. Pulugurthaa, S. S., Duddub, V. R. y Kotagiri, Y. (2013). Traffic analysis zone level crash estimation models based on land use. Accident Analysis and Prevention, 50, 678-687. DOI: 10.1016/j.aap.2012.06.016
  11. Programa de Investigación en Desarrollo Urbano Sostenible (ProDUS) (2015). Costos de los choques viales en Costa Rica (Informe Final Proyecto 321-B0602). Recuperado de: https://www.ucr.ac.cr/medios/documentos/2015/informe-final.pdf
  12. Wang, K., Ivan, J. N., Burnicki, A. C. y Mamun, S. A. (2017). Predicting local road crashes using socioeconomic and land cover data. Journal of Transportation Safety & Security, 9(3), 301-318.
  13. World Health Organization (2018). Global status report on road safety 2018. Geneva: World Health Organization.

Downloads

Download data is not yet available.