Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments
PDF
HTML

Keywords

environmental DNA (eDNA)
detection probability
occupancy models
persistence
metabarcode
minibarcode
environmental DNA (eDNA)
detection probability
occupancy models
persistence
metabarcode
minibarcode

How to Cite

Díaz-Ferguson, E. E., & Moyer, G. R. (2014). History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments. Revista De Biología Tropical, 62(4), 1273–1284. https://doi.org/10.15517/rbt.v62i4.13231

Abstract

Genetic material (short DNA fragments) left behind by species in nonliving components of the environment (e.g. soil, sediment, or water) is defined as environmental DNA (eDNA). This DNA has been previously described as particulate DNA and has been used to detect and describe microbial communities in marine sediments since the mid-1980’s and phytoplankton communities in the water column since the early-1990’s. More recently, eDNA has been used to monitor invasive or endangered vertebrate and invertebrate species. While there is a steady increase in the applicability of eDNA as a monitoring tool, a variety of eDNA applications are emerging in fields such as forensics, population and community ecology, and taxonomy. This review provides scientist an understanding of the methods underlying eDNA detection as well as applications, key methodological considerations, and emerging areas of interest for its use in ecology and conservation of freshwater and marine environments.

https://doi.org/10.15517/rbt.v62i4.13231
PDF
HTML

References

Alvarez, A. J., Yumet, G., Santiago, C., & Torantos, G. (1996). Stability of manipulated plasmid DNA in aquatic environments. Environmental Toxicology and Water Quality, 11, 129-135.

Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M. (Eds.) (1998). The Physiological Ecology of Harmful Algal Blooms. Heidelberg: Springer-Verlag.

Andrew Royle, J. & Dorazio, R. (2008). Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Oxford, UK: Elsevier.

Bailiff, M. & Karl, D. (1991). Dissolved and particulate DNA dynamics during a spring bloom in the Antartic Peninsula region, 1986-1987. Deep Sea Research. Part 1. Oceanographic Research, 38(8-9), 1077-1095.

Baird, D. & Hajibabaei, M. (2012). Biomonitoring 2.0 a new paradigm in ecosystem assessment made possible by next generation DNA sequencing. Molecular Ecology, 21, 2039-2044.

Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Lindsay Chadderton, W., & Lodge, D. (2014). Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science and Technology, 48, 1819-1827.

Blanc, G. (2001). Introduction of pathogens in European aquatic ecosystems: attempt of evaluation and realities. In A. Uriarte & B. Basurco (pp. 37-50) (Eds.). Environmental Impact Assessment of Mediterranean Aquaculture Farms.

Braley, M., Goldsworthy, S., Page, B., Steer, M., & Austin, J. (2010). Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus studies gouldi. Molecular Ecology Research, 10(3), 466-474.

Bucklin, A., Steinke, D., & Blanco-Bernal, L. (2011). DNA barcoding of marine metazoa. Annuals Reviews in Marine Science, 3, 471-508.

Bull, A., Stach, J., Ward, A., & Goodfellow, M. (2005). Marine actinobacteria: perspectives, challenges, future directions. Antonie van Leeuwenhock, 87(3), 65-79.

Corinaldesi, C., Beolchini, F., & Dell’Anno, A. (2008). Damage and degradation rates of extracellular DNA in sediments: implications for the preservation of gene sequences. Molecular Ecology, 17, 3939-3951.

Darling, J., & Blum, M. (2007). DNA-based methods for monitoring invasive species: a review and prospectus. Biological Invasions, 9, 751-765.

Darling, J. & Mahon, A. (2012). From molecules to management: Adopting DNA based methods for monitoring biological invasions in aquatic environments. Environmental Research, 111(7), 978-988.

Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 6 (8), e23398.

Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., & Miaud, C. (2012). Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates cathesbeianus. Journal of Applied Ecology, 49, 953-959.

Díaz-Ferguson, E., Haney, R., Wares, J., & Silliman, B. (2010). Populations genetics of a trochid gastropod broadens picture of Caribbean Sea connectivity. PLoS ONE, 5(9), e12675.

Díaz-Ferguson, E. (2012). Introducción a la ecología molecular marina: aplicaciones y perspectivas. Via Argentina, Panamá, República de Panamá. Universal Books. 212p.

Didham, R., Tylianakis, J., Hutchinson, M., Ewers, R., & Gemmel, N. (2005). Are invasive species the drivers of ecological change. Trends in Ecology and Evolution, 20(9), 470-474.

Eggers, S., Lewandowska, A., Ramos, B., Blanco-Ameijeiras, J., Gallo, F., & Mathiesen, B. (2013). Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology, doi: 10.1111qcb. 12421

Ficetola, F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biological Letters, 4, 423-425.

Foote, A., Thomsen, P., Sveegaard, S., Wahlberg, M., Kielgast, J., Kyhn, L., Salling, A., Galatius, A., Orlando, L., Thomas, M., & Gilbert, T. (2012). Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE, 7 (8), e4178.

Goldberg, C., Pillod, D., Arkle, R., & Waits, L. (2011). Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed frogs and Idaho giant Salamanders. PLoS ONE, 6(7), e22746.

Goldberg, C., Sepulveda, A., Ray, A., Baumgardt, J., & Waits, L. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science, 32 (3), 792-800.

Hajibabaei, M., Singer, G., Clare, E., & Hebert, P. (2007). Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biology, 5, 24-30.

Handelsman, J. (2004). Metagenomics: applications of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68, 669.

Hofreiter, M., Mead, J., Martin, P., & Poinar, H. (2003). Molecular carving. Current Biology, 13, R693-R695.

Hyman, O. & Collins, J. (2012). Evaluation of a filtration-based method for detecting Batrachochytrium dedrobatidis in natural bodies of water. Diseases of Aquatic Organisms, 97 (3), 185-195.

Jerde, C., Mahon, A., Chadderton, W., & Lodge, D. (2011). “Sight unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4, 150-157.

Ji, Y., Ashton, L., Pedley, S., Edwards, D., Tang, Y., Nakamura, A., Kitching, R., Dolman, P., Woodcock, P., Edwards, F., Larsen, T., Hsu, W., Benedick, S., Hammer, K., Wilcove, D., Bruce, C., Wang, X., Levi, T., Lott, M., Emerson, B., & Yu, D. W. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16, 1245-1257.

Jones, M. (2013). Environmental DNA: Genetics steps forward when traditional ecological surveys fall short. Fisheries, 38(7), 332-333.

Kelly, R., Port, J., Yamahara, K., & Crowder, L. 2013. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE, 9(1), e86175.

Layton, A. (2006). Development of Bactereroides 16S rRNA Gene Taqman-base real time PCR assays for estimation of total, human and bovine fecal pollution in rivers. Applied Environmental Microbiology, 72(6), 4214-4224.

Lodge, D., Turner, C., Jerde, C., Barnes, M., Chadderton, L., Egan, S., Feder, J., Mahon, A., & Pfrender, M. (2012). Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular Ecology, 11, 2555-2558.

MacKenzie, D., Nichols, J., Lachman, G., Droege, S., Royle, J., & Langtimm, C. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 84, 2200-2207.

MacKenzie, D., Nichols, J., Royle, J., Pollock, K., & Hines, J. (2006). Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. San Diego, United States: Elsevier.

Mahon, A., Jerde, C., Galaska, M., Bergner, J., Chadderton, W., Lodge, D., Hunter, M., & Nico, L. (2012). Validation of eDNA surveillance sensitivity for detection of Asian Carps in controlled and field experiments. PLoS ONE, 8(3), e58316.

Matheson, C., Gurney, C., Esau, N., & Lehto, R. (2010). Assessing PCR inhibition from humic substances. The Open Enzyme Inhibition Journal, 3, 38-45.

Miller, D., Talley, B., Lips, K., & Campbell Grant, E. (2012). Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods in Ecology and Evolution, 3(5), 850-859.

Minamoto, T., Honjo, M., & Kawabata, Z. (2009). Seasonal distribution of cyprinid herpes virus 3 in Lake Biwa Japan. Applied Environmental Microbiology, 75, 6900-6904.

Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M., & Kawabata, Z. (2012). Surveillance of fish species composition using environmental DNA. Limnology, 13, 193-197.

Mordecai, R., Mattsson, B., Tzilkowski, C., & Cooper, R. (2011). Addressing challenges when studying mobile or episodic species: hierarchical Bayes estimation of occupancy and use. Journal of Applied Ecology, 48(1), 56-66.

Ogden, R. (2008). Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish and Fisheries, 9, 462-472.

Ogden, R. (2009). Wildlife DNA forensics- Bringing the gap between conservation genetics and law enforcement. Endanger Species Research, 9, 179-195.

Ogram, A., Sayler, G., & Barkay, T. (1987). The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods, 7, 57-66.

Paul, J., Kellogg, C., & Jiang, S. (1996). Viruses and DNA in marine environments. In R. R. Colwell (pp. 115-124) (Eds.). Microbial diversity in time and space. Plenum Press: New York.

Piaggio, A., Engeman, R., Hopken, M., Humphrey, J., Keacher, K., Bruce, W., & Michael, A. (2013). Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Molecular Ecology Research, doi:101111/1755-0998.12180.

Pilliod, D., Goldberg, C., Arkle, R., & Waits, L. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 70, 1123-1130.

Pilliod, D., Golberg, C., Arkle, R., & Waits, L. (2014). Factors influencing detection of eDNA from a stream dwelling amphibian. Molecular Ecology Resources, 14(1), 109-116.

Pollock, K., Nichols, J., Simmons, T., Farnworth, G., Bailye, L., & Sauer, J. (2002). Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics, 13, 105-119.

Rothlisberger, J. & Lodge, D. (2013). The Laurentian Great Lakes as a beachhead and a gathering place for biological invasions. Aquatic Invasions, 4, 361-374.

Shapiro, B. (2008). Engineered polymerases amplify the potential of ancient DNA. Trends in Biotechnology, 26, 285-287.

Shen, Y., Chen, X., & Murphy, R. (2013). Assessing DNA Barcoding as a tool for species identification and data quality control. PLoS ONE, 8(2), e57125.

Shmidt, B., Kery, M., Ursenbasher, S., Hyman, O., & Collins, J. (2013). Site occupancy models in the analysis of environmental DNA presence/absence surveys: A case study of an emergent amphibian pathogen. Methods in Ecology and Evolution, 4(7), 646-653.

Sterner, R. & Elser, J. (2002). Ecological Stoichiometry: The biology of elements from molecules to the biosphere. Princeton: Princeton University Press.

Strayer, D. (2010). Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater biology, 55(1), 155-174.

Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. (2012a). Environmental DNA. Molecular Ecology, 21, 1789-1793.

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, L. (2012b). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 2045-2050.

Takahara, T., Minamoto, T., Yamanaka, H., Hideyuki, D., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4), e35868.

Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE, 8(2), e56584.

Thomsen, P., Kielgast, J., Iversen, L., Wiuf, C., Rasmussen, M., Gilbert, M., Orlando, L., & Willerslev, E. (2012a). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21, 2565-2573.

Thomsen, P., Kielgast, J., Iversen, L., Moller, P., Rasmussen, M., & Willerslev, E. (2012b). Detection of a diverse marine fauna using eDNA from seawater samples. PLoS ONE, 7(8), e41732.

Turner, C., Barnes, M., Charles, C., Xu, Y., Jones, S., Jerde, C., & Lodge, D (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. BioRxiv doi: 10.1101/001941.

Valentini, A., Pompano, F., & Taberlet, P. (2009). DNA barcoding for ecologists. Trends in Ecology and Evolution, 24, 110-117.

Veldhoen, N., Ikonomou, M., & Helbing, C. (2012). Molecular profiling of marine fauna: Integration of omics with environmental assessment of the world’s oceans. Ecotoxicology and Environmental Safety, 76(1), 23-38.

Venter, J., Remington, K., Heidelberg, J., Hallpern, A., Rusch, D., Eisen, J., Wu, Du., Paulsen, I., Nelson, K., Nelson, W., Fouts, D., Levy, S., Knap, A., Lomas, M., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y., & Smith, H. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66-74.

Weirbauer, M., Fucks, D., & Peduzzi, P. (1993). Distribution of viruses and dissolved DNA along a coastal trophic gradient in the Northern Adriatic Sea. Applied Environmental Microbiology, 59(12), 4074-4082.

Wilcox, T., McKelvey, K., Young, M., Jane, S., Lowe, W., Whiteley, A., & Schwartz, M. (2013). Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS ONE, 8(3), e59520.

Willerslev, E., Hansen, A., Binladen, J., Brand, T., Gilbert, M., Shapiro, B., Bunce, M., Wiuf, C., Gilichisky, D., & Cooper, A. (2003). Diverse plant and animal genetic record from Holocene and Pleistocene sediments. Science, 300, 791-795.

Willerslev, E., Capellini, A., Boomsman, W. R., & Nielsen, M. (2007). Ancient biomolecules from deep ice cores reveals a forested Southern Greenland. Science, 317, 111-114.

Wilson, C. & E. Wright. (2013). Using environmental DNA (eDNA) as a tool in risk-based decision making. Technical Report, Ontario Ministry of Natural Resources, Aquatic and Research Development Section. Aquatic Research Series, 2013-01.

Yoccoz, N. (2012). The future of environmental DNA in ecology. Molecular Ecology, 21, 2031-2038.

Zarzoso-Lacoste, D., Corse, E., & Vidal, G. (2013). Improving PCR detection of prey in molecular diet studies: importance of group specific primers set selection and extraction protocol performances. Molecular Ecology Resources, 13(1), 117-127.

Zhu, B. (2006). Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation of real time polymerase chain reaction (PCR). Water Research, 40, 3231-3238.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2014 Revista de Biología Tropical

Downloads

Download data is not yet available.