Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Standarization of a Protocol of Immunohistochemistry for the Detection of Brain Microglia in Wistar Rats
PDF
HTML

Keywords

Immunohistochemistry
Wistar rats
Microglia

How to Cite

Ramírez Chan DDS, MSc, PhD, K., & Jaime Fornaguera-Trías PhD, J. (2017). Standarization of a Protocol of Immunohistochemistry for the Detection of Brain Microglia in Wistar Rats. Odovtos - International Journal of Dental Sciences, 19(3), 45–59. https://doi.org/10.15517/ijds.v19i3.29698

Abstract

Objective: Standardize a protocol of immunohistochemistry that has been widely used in C57BL/6J mice to identify microglia of the central nervous system in Wistar rats.  Materials and Methods: This research activity was carried out in two parts. In the first part, a protocol of immunohistochemistry was implemented to identify microglia in the central nervous system of 6 Wistar rats. A primary antibody with reactivity to rat and a specific secondary antibody to the primary were used. Once the protocol was established in rats' brains, an immunological challenge was produced with the intraperitoneal application of lipopolysaccharide in 2 Wistar rats, in order to evidence the changes in microglia morphology.  Results and Discussion: We demonstrate that without making major modifications to the original protocol, it can also be used to identify microglia in adult Wistar rats. In the near future, this immunostaining protocol will be applied to elucidate the bidirectional interaction between the brain and the immune system, under homeostatic conditions and different physiological and pathological stimuli.


https://doi.org/10.15517/ijds.v19i3.29698
PDF
HTML

References

Ginhoux F., Greter M., Leboeuf M. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330 (6005): 841-5.

Ransohoff R. M., Cardona A. E. The myeloid cells of the central nervous system parenchyma. Nature 2010; 468 (7321) : 253-62.

Kierdorf K., Erny D., Goldmann T. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 2013;16 (3): 273-80.

Nimmerjahn A., Kirchhoff F., Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (New York, N.Y.) 2005; 308 (5726): 1314-8.

Grossmann R., Stence N., Carr J. et al. Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 2002; 37 (3): 229-240.

McGavern D. B., Kang S. S. Illuminating viral infections in the nervous system. Nature Reviews. Immunology 2011;11 (5): 318-29.

Wake H., Moorhouse A. J., Jinno S. et al. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. The Journal of neuroscience: the official journal of the Society for Neuroscience 2009; 29 (13): 3974-80.

Sierra A., Encinas J. M., Deudero J. J. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell stem cell 2010; 7 (4): 483-95.

Tremblay M., Lowery R. L., Majewska A. K. Microglial Interactions with Synapses Are Modulated by Visual Experience. PLoS Biology 2010; 8 (11).

Delpech J. C., Madore C., Nadjar A. et al. Microglia in neuronal plasticity: Influence of stress. Neuropharmacology 2015; 96:19-28.

Pocock J. M., Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci 2007; 30 (10): 527-35.

Rivest S. Regulation of innate immune responses in the brain. Nature reviews. Immunology 2009; 9 (6): 429-39.

Walker D. G., Lue L. F. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 2015 Aug 19;7 (1): 56-015-0139-9.

Carson C. F., Hammer K. A., Riley T. V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 2006 Jan; 19 (1): 50-62.

Chen Z., Jalabi W., Shpargel K. B., et al. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci. 2012 Aug 22; 32 (34): 11706-15.

Buttini M., Limonta S., Boddeke H. W. Peripheral administration of lipopolysaccharide induces activation of microglial cells in rat brain. Neurochem Int. 1996 Jul; 29 (1): 25-35.

Ransohoff R. M., Perry V. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27: 119-45.

Tarassishin L., Suh H. S., Lee S. C. LPS and IL-1 differentially activate mouse and human astrocytes: role of CD14. Glia 2014 Jun; 62 (6): 999-1013.

Cardona A. E., Huang D., Sasse M. E. et al. Isolation of murine microglial cells for RNA analysis or flow cytometry. Nature Protocols 2006; 1 (4): 1947-51.

Imai Y., Kohsaka S. Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 2002 Nov; 40 (2): 164-174.

Brenes J. C., Fornaguera J. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res. 2009 Mar 2; 198 (1): 199-205.

Sequeira-Cordero A., Mora-Gallegos A., Cuenca-Berger P. et al. Individual differences in the forced swimming test and neurochemical kinetics in the rat brain. Physiol Behav. 2014 Apr 10; 128: 60-9.

Mora-Gallegos A., Rojas-Carvajal M., Salas S. et al. Age-dependent effects of environmental enrichment on spatial memory and neurochemistry. Neurobiol Learn Mem. 2015 Feb; 118: 96-104.

Wohleb E. S., Hanke M. L., Corona A. W. et al. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 2011 Apr 27; 31 (17): 6277-88.

Cerón J., Troncoso J. Alteraciones de las células de la microglia del sistema nervioso central provocadas por lesiones del nervio facial. Biomédica 2016; 36:619-31.

Donnelly D. J., Gensel J. C., Ankeny D. P. et al. An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. J Neurosci Methods 2009 181:36-44.

Norden D. M., Trojanowski P. J., Villanueva E., Navarro E., Godbout J. P. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. 2016 Feb; 64 (2): 300-16.

Trapp B. D., Wujek J. R., Criste G. A. et al. Evidence for synaptic stripping by cortical microglia. Glia. 2007 Mar ; 55 (4): 360-8.

Wohleb E. S., Fenn A. M., Pacenta A. M. et al. Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology. 2012 Sep; 37 (9): 1491-505.

Corona A. W., Norden D. M., Skendelas J. P. et al. Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX(3)CR1)-deficient mice. Brain Behav Immun. 2013 Jul; 31:134-42.

Ito D., Imai Y., Ohsawa K., Nakajima K. et al. Microglia-specific localization of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 1998 Jun 1; 57 (1):1-9.

Saborío-Arce A. Tesis de Licenciatura en Biotecnología, Instituto Tecnológico de Costa Rica: Establecimiento de protocolos de inmunotinción para los antígenos GFAP, NeuN y BrdU en cerebro de rata. https://es.scribd.com/document/318291917/Tesis-Lic-Biotecnologia-Saborio-Arce-2016

Boenisch T. Heat-induced antigen retrieval: what are we retrieving? J Histochem Cytochem 2006; 54:961-964.

Naskar R., Wissing M., Thanos S. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci 2002 Sep; 43(9): 2962-2968.

Imai Y., Ibata I., Ito D. et al. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 1996 Jul 25; 224 (3): 855-862.

Thomas W. E. Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev 1992 Jan-Apr; 17 (1): 61-74.

Zhang G. X., Li J., Ventura E. et al. Parenchymal microglia of naive adult C57BL/6J mice express high levels of B7.1, B7.2, and MHC class II. Exp Mol Pathol 2002 Aug; 73(1): 35-45.

Gallego B. I., Salazar J. J., de Hoz R. et al. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 2012 May 14; 9: 92-2094-9-92.

Dijkstra C. D., Dopp E. A., Joling P. et al. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 1985 Mar; 54 (3): 589-599.

Robinson A. P., White T. M., Mason D. W. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 1986 Feb; 57 (2): 239-247.

Castellano B., Gonzalez B., Jensen M. B. et al. A double staining technique for simultaneous demonstration of astrocytes and microglia in brain sections and astroglial cell cultures. J Histochem Cytochem 1991 May; 39 (5): 561-568.

Chen L., Yang P., Kijlstra A. Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 2002 Mar;10 (1): 27-39.

Imai Y., Kohsaka S. Intracellular signaling in M-CSF-induced microglia activation: Role of Iba1. Glia 2002; 40 (2): 164-174.

Davis E. J., Foster T. D., Thomas W. E. Cellular forms and functions of brain microglia. Brain Res Bull 1994; 34:73-78.

Streit W. J. Microglial response to brain injury: a brief synopsis. Toxicol Pathol 2000; 28: 28-30.

Ayoub A. E., Salm A. K. Increased morphological diversity of microglia in the activated hypothalamic supraoptic nucleus. J Neurosci 2003; 27; 23 (21): 7759-7766.

Dutta G., Zhang P., Liu B. The lipopolysaccharide Parkinson's disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol 2008; 22, 453-464.

Qin L., Wu X., Block M. L. et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007; 55, 453-462.

Cunningham C., Campion S., Lunnon K. et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 2009; 65, 304-312.

Maccioni R. B., Rojo L. E., Fernandez J. A. et al. The role of neuroimmunomodulation in Alzheimer's disease. Ann NY Acad Sci 2009; 1153, 240-246.

Masocha W. Systemic lipopolysaccharide (LPS)-induced microglial activation results in different temporal reduction of CD200 and CD200 receptor gene expression in the brain. Journal of Neuroimmunology 2009; 214: 78-82.

McGeer P. L., Itagaki S., Boyes B. E. et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 1988; 38, 1285-1291.

Gordon P. H., Moore D. H., Miller R. G. et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomized trial. Lancet Neurol 2007; 6, 1045-1053.

NINDS-NET-PD-Investigators. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin. Neuropharmacol 2008; 31, 141-150.

Zhang Y., Metz L. M., Yong V. W. et al. Pilot study of minocycline in relapsing–remitting multiple sclerosis. Can J Neurol Sci 2008; 35, 185-191.

Comments

Downloads

Download data is not yet available.