Abstract
The extracellular matrix (ECM) plays an important role in the regulation of biological events, such as cell migration, proliferation and differentiation. Chronic exposure to ultraviolet (UV) light causes elastosis (to varying degrees), which corresponds to a basophilic degeneration of the ECM. Actinic cheilitis (AC) is a potentially malignant lip lesion induced by regular and prolonged exposure to UV light, which mainly affects the vermilion. AC lesions have a complex stroma characterized by the presence of elastosis, chronic inflammatory infiltrate of different intensity and the appearance of telangiectatic blood vessels. Within this inflammatory infiltrate a significant increase of mast cells (MCs) has been described, located especially around areas of elastosis and at the subepithelial zone. It has been proposed that actinic elastosis is produced both, by degenerative processes and by abnormal synthesis of elastic fibers by photodamaged fibroblasts, which is accompanied by morphological changes in collagen. Although the fibroblast would play a major role in actinic elastosis formation, several studies suggest that other cell types such as MCs also contribute significantly to actinic ECM damage. The purpose of this review is to discuss the characteristics of elastosis in AC.
References
Picascia D. D., Robinson J. K.: Actinic cheilitis: a review of the etiology, differential diagnosis, and treatment. J Am Acad Dermatol 1987; 17 (2 Pt 1): 255-64.
Main J. H., Pavone M. Actinic cheilitis and carcinoma of the lip. J Can Dent Assoc. 1994; 60: 113-6.
Markopoulos A., Albanidou-Farmaki E., Kayavis I. Actinic cheilitis: clinical and pathologic characteristics in 65 cases. Oral Dis 2004; 10: 212-216.
Lopes M. L. D. de S., da Silva Júnior F. L., Lima K. C., de Oliveira P. T., da Silveira É. J. D. Clinicopathological profile and management of 161 cases of actinic cheilitis. Anais Brasileiros de Dermatologia. 2015; 90 (4): 505-512.
Kaugars G. E., Pillion T., Svirsky J. A., Page D. G., Burns J. C., Abbey L. M. Actinic cheilitis. A review of 152 cases. Oral Surg. Oral Med. Oral Pathol. Oral Radiol Endod 1999; 88: 181-6.
Imayama S., Nakamura K., Takeuchi M., Hori Y.; Takema Y.; Sakaino Y.; Imokawa G. Ultraviolet-B irradiation deforms the configuration of elastic fibers during the induction of actinic elastosis in rats. J Dermatol Sci 1994; 7:32-8.
Lewis K. G., Bercovitch L., Dill S. W., Robinson-Bostom L. Acquired disorders of elastic tissue: Part I. Increased elastic tissue and solar elastotic syndromes. J Am Acad Dermatol. 2004; 51: 1-21.
Rojas I. G., Martínez A., Pineda A., Spencer M. L., Jiménez M., Rudolph M. I. Increased mast cell density and protease content in actinic cheilitis. J Oral Pathol Med 2004; 33: 567-73.
Grimbaldeston M. A., Simpson A., Finlay-Jones J. J., Hart P. H. The effect of ultraviolet radiation exposure on the prevalence of mast cells in human skin. Br J Dermatol. 2003; 148 (2): 300-6.
Bouissou H., Pieraggi M. T., Julian M., Savit T. The elastic tissue of the skin. A comparison of spontaneous and actinic (solar) aging. Int J Dermatol. 1988; 27 (5):327-35. Bernstein E. F., Chen Q. Y., Tamai K. Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. J Invest Dermatol 1994; 103: 182-6.
Sgarbi F. C., Bertini F., Tera T. M., Cavalcante A. R. Morphology of collagen fibers and elastic system fibers in actinic cheilitis. Indian J. Dent Res. 2010; 21: 518-22.
Boza Y., Martínez A., Rojas I. G. Evaluación histomorfométrica de la elastosis en queilitis actínica. Odovtos- Int J Dent Sc. 2016; 18 (3): 51-59.
Tsoureli-Nikita E., Watson R. E., Griffiths C. E. Photoageing: the darker side of the sun. Photochem Photobiol Sci. 2006 Feb; 5 (2): 160-4.
Özcan G., Shenaq S., Chahadeh H., Spira M. Ultraviolet-A induced delayed wound contraction and decreased collagen content in healing wounds and implant capsules. Plast. Reconstr. Surg. 1993; 92: 480-484.
Salvadori G., Dos Santos J. N., Martins M. A., Vasconcelos A. C., Meurer L., Rados P. V., Carrard V. C., Martins M. D. Ki-67, TGF-β1, and elastin content are significantly altered in lip carcinogenesis. Tumour Biol. 2014; 35 (8): 7635-44.
Kligman A. M. Early destuctive effects of sunlight on human skinn. JAMA.1969; 210: 2377.
Berger H. Tsambaos D., Mahrle G. Experimental elastosis induced by chronic ultrraviolet expoure. Arch Dermatol Res. 1980; 269: 39.
Kligman L. H., Gebre M., Alper R. Collagen metabolism in ultraviolet irradiation hairless mouse skin and its correlation to histoquimical observations. J Invest. Dermatol. 1989; 93: 210.
Lovell C. R., Plastow S. R., Russel-Joness R. R. Collagen and elastin in actinic elastosis (abstr). J Invest Dermatol.1984; 82: 566.
Bernstein E. F., Chen Q. Y., Tamai K. Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. J Invest Dermatol 1994; 103: 182-6.
Lakkakorpi J., Vitto J. Long term sun exposure alters the collagen of papillary dermis. J Am Acad Dermatol 1996; 39: 209-18.
Boza Y., Yefi R., Rudolph M. I., Smith P., Oberyszyn T. M., Tober K. L., Rojas I. G. Single exposure of human oral mucosa fibroblasts to ultraviolet B radiation reduces proliferation and induces COX-2 expression and activation. Rev. Clin. Periodoncia Implantology. Rehabil. Oral. 2010; Vol.3 (3): 123-127.
Kligman L. H. Effects of all-trans-retinoic acid on the dermis of hairless mice. J Am Acad Dermatol. 1986; 15: 779-785.
Das S. K., Brantley S. K., Davidsonn S. F. Wound tensile strength in hairless guinea pig following irradiation with pure ultraviolet-A light. British J of Plastic Surgery. 1991; 44: 509-13.
Mauch C. T., Krieg, Bauer E. A. Role of the extracellular matrix in the degradation of connective tissue. Arch Dermatol.1994; 287: 107-114.
Bianco B. C., Scotti F. M., Vieira D. S., Biz M. T., Castro R. G., Modolo F. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma. Int J Exp Pathol. 2015; 96 (5): 311-8.
Poulopoulos A. K., Andreadis D., Markopoulos AK. Expression of matrix metalloproteinases 9 and 12 in actinic cheilitis. World J Exp Med. 2013; 3 (3): 43-9.
Ohnishi, Y., Tajima, S., Akiyama, M., Ishibashi, A., Kobayashi, R. Expression of elastin -related proteins and matrix metalloproteinases in actinic elastosis of sun-damage skin. Arch Dermatol Res 2000; 292 (1): 27-31.
Lavker R. M., Kligman A. M. Chronic heliodermatitis: A morphologic evaluuationn of chronic actinic dermal damage with emphasis on the role of mast cells. J Invest Dermatol. 1988; 90: 325-30.
Gonzalez S., Moran M., Kochevar I. E. Chronic photodamage in skin of mast cell-deficient mice. Photochem Photobiol. 1999; 70: 248-53.
Fourtanier A., Berrebi C. Miniature pig as a animal model to study photoaging. Photochem Photobiol.1989; 50: 771-84.
Hart P. H., Grimbaldeston M. A., Finlay-Jones J. J. Sunlight, immunosuppression and skin cancer: role of histamine and mast cells. Clin Exp Pharmacol Physiol. 2001; 28: 1-8.
Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol. 1997; 61: 233-45.
Metcalfe D. D., Baram D., Mekori Y. A. Mast cells. Physiol Rev. 1997; 77: 1033-79.
Blair R. J., Meng H., Marchese M. J., Ren S., Schwartz L. B., Tonnesen M. G., Gruber B. L. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997; 99: 2691-700.
Fajardo I., Pejler G. Human. Mast cell beta-tryptase is a gelatinase. J Immunol 2003; 171: 1493-9.
Garbuzenko E., Nagler A., Pickholtz D. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin Exp Allergy. 2002; 32: 237-246.
Taipale J., Lohi J., Saarinen J., Kovanen P. T., Keski-Oja J. Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 1995; 270: 4689-96.
Fukami H., Okunishi H., Miyazaki M. Chymase: its pathophysiological roles and inhibitors. Curr Pharm Des 1998; 4: 439-53.
Xu X., Rivkind A., Pappo O., Pikarsky A., Levi-Schaffer F. Rol of mast cells and myofibroblasts in human peritoneal adhesion formation. Ann Surg. 2002; 236: 593-601.
Rojas I. G., Spencer M. L., Martínez A., Maurelia M. A., Rudolph M. I. Characterization of Mast cell Subpopulations in Lip Cancer. J Oral Pathol Med 2005; 34: 268-73.
Fang K. C., Wolters P. J., Steinhoff M., Bidgol A., Blount J. L., Caughey G. H. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J Immunol 1999; 162: 5528-35.
Cavarra E., Fimiani M., Lungarella G., Andreassi L., de Santi M., Mazzatenta C., Ciccoli L. UVA light stimulates the production of cathepsin G and elastase-like enzymes by dermal fibroblasts: a possible contribution to the remodeling of elastotic areas in sun-damaged skin. Biol Chem 2002; 383:199-206.
Rojas I. G., Martínez A., Brethauer U., Grez P., Yefi R., Luza S., Marchesani F. J. Actinic cheilitis: epithelial expression of COX-2 and its association with mast cell tryptase and PAR-2. Oral Oncol. 2009; 45 (3): 284-90.
Artuc M., Steckelings U. M., Henz B. M. Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors. J Invest Dermatol. 2002 Mar; 118 (3): 391-5.
Rojas I. G., Boza Y. V., Spencer M. L., Flores M., Martínez A. Increased fibroblast density in actinic cheilitis: association with tryptase-positive mast cells, actinic elastosis and epithelial p53 and COX-2 expression. J Oral Pathol Med. 2012; 41 (1): 27-33.
de Santana Sarmento D. J., da Costa Miguel M. C., Queiroz L. M., Godoy G. P., da Silveira E. J. Actinic cheilitis: clinicopathologic profile and association with degree of dysplasia. Int J Dermatol. 2014; 53: 466-472. Int J Dermatol. 2014; 53 (4): 466-72.
Coussens L. M., Werb Z. Inflammatory cells and cancer: think different! J. Exp Med, 2001; 193: F23-6.
Coussens L. M., Raymond W. W., Bergers G et al. Inflammatory mast cells upregulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev, 1999; 13: 1382-97.
Ariotti C., Wagner V. P., Salvadori G., Carrard V. C., Martins M. A., da Cunha Filho J. J., Meurer L., Martins M. D. VEGFR1 and VEGFR2 in lip carcinogenesis and its association with microvessel density. Tumour Biol. 2015; 36 (9): 7285-92.
Abreu M. A., Silva O. M., Neto Pimentel D. R., Hirata C. H., Weckx L. L., Alchorne M. M., Michalany N. S. Actinic cheilitis adjacent to squamous carcinoma of the lips as an indicator of prognosis. Braz J. Otorhinolaryngol. 2006; 72 (6): 767-71.
Savage N. W., McKay C., Faulkner C. Actinic Cheilits in dental pratice. Aust Dent J. 2010; 55: 78-84.
van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 2009; 45: 317-323.
Costa C., Scalvenzi M., Ayala F., Fabbrocini G., Monfrecola G. How to treat actinic keratosis? An update. Journal of Dermatological Case Reports. 2015; 9 (2): 29-35.
Chaves Y. N., Torezan L. A., Lourenço S. V., Neto C. F. Evaluation of the efficacy of photodynamic therapy for the treatment of actinic cheilitis. Photodermatol Photoimmunol Photomed. 2017; 33 (1): 14-21.
Oyama S., Funasaka Y., Tsuchiya S. I., Kawana S., Saeki H.Increased number of mast cells in the dermis in actinic keratosis lesions effectively treated with imiquimod. J Dermatol. 2017; 44 (8): 944-949.