Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
A Preliminary Research Study on the Cytotoxicity of Expired and Non-expired Composite Resins: In Vitro Study
PDF
HTML
EPUB

Keywords

Composite resin; Expiration; Toxicity; Cell survival.
Resinas compuestas; Caducidad; Toxicidad; Supervivencia celular.

How to Cite

Kazak, M., Donmez, N., Bahadori, F., Betul Yenigun, V., & Kocyigit, A. (2020). A Preliminary Research Study on the Cytotoxicity of Expired and Non-expired Composite Resins: In Vitro Study. Odovtos - International Journal of Dental Sciences, 22(3), 123–134. https://doi.org/10.15517/ijds.2020.40455

Abstract

Objective: Studies have focused on use of non-expired composites. Unfortunately some clinicians still use expired composite resins without considering their effects. The objective of this in vitro preliminary research was to investigate cytotoxicity of expired(6-months) and non-expired composite resins. Materials and methods: Expired (E) and non-expired (NE) samples of one bulk-fill (Tetric N-Ceram Bulk-fill [TNB], Ivoclar Vivadent), two nano-hybrid (Tetric N-Ceram [TN], Ivoclar Vivadent; Clearfil Majesty ES-2 [CM], Kuraray) composite resins were tested on L929 fibroblast cells. Medium covering cells was removed then plastic rings (2-mm height) were filled with non-polymerized composite resins, placed in direct contact with cells and polymerized with LED light curing unit (LCU). Three samples were prepared for each group. After polymerization, removed medium was added to the cells. Cells that were left without medium (WOM) and cells that were exposed to LCU were used as positive control groups. Cells without any treatment were used as negative control group (C). Cells were incubated with tested materials for 7-days to evaluate cytotoxicity. Cell viability was calculated by sulforhodamine B test as a percentage (%). One-way ANOVA and post-hoc Tukey tests were used for statistical analyses (p<0.05). Results: Comparison between E and NE groups of same composite resins did not result in statistically significant differences (p>0.05), except between TN NE and TN E (p<0.05). TN E group was significantly more cytotoxic than TN NE group. When NE composite resin groups were compared to each other, statistically significant difference was only obtained between TNB NE and TN NE (p<0.05). Among all tested groups, TN NE group showed the least cytotoxic profile. No statistically significant differences were determined when E composite resin groups were compared to each other (p>0.05). All experimental groups compared with C group showed statistically significant cytotoxicity (p<0.05). A statistically significant difference existed between LCU and C groups (p<0.05). Conclusions: In clinical practice, expired composite resins should never be used. Although a correlation was found between expiration dates of nano-hybrid composite resins and cell viability, opposite data were obtained for bulk-fill composite resin. Researches are still required to evaluate biocompatibility of bulk-fill composite resins at various thicknesses with current LCUs.

https://doi.org/10.15517/ijds.2020.40455
PDF
HTML
EPUB

References

Geurtsen W. Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med. 2000; 11 (3): 333-355.

Moharamzadeh K., Brook I., Van Noort R. Biocompatibility of resin-based dental materials. Mater. 2009; 2 (2): 514-548.

Shajii L., Santerre J. P. Effect of filler content on the profile of released biodegradation products in micro-filled bis-GMA/TEGDMA dental composite resins. Biomaterials. 1999; 20 (20): 1897-1908.

Council on Dental Materials, Instruments and Equipment. ANSI/ADA specification no. 33* for dental terminology. JADA. 1984; 109 (1): 89.

Schweikl H., Schmalz G., Spruss T. The induction of micronuclei in vitro by unpolymerized resin monomers. J Dent Res. 2001; 80 (7): 1615-1620.

Volk J., Ziemann C., Leyhausen G., Geurtsen W. Non-irradiated campherquinone induces DNA damage in human gingival fibroblasts. Dent Mater. 2009; 25 (12): 1556-1563.

Hondrum S. O. The US Army Institute of dental Research dental materials shelf-life survey: questionnaire results. Mil Med. 1991; 156 (9): 488-491.

Hondrum S. O. Storage stability of dental luting agents. J Prosthet Dent. 1999; 81 (4): 464-468.

Tirapelli C., Panzeri F. C., Panzeri H., Pardini L. C., Zaniquelli O. Radiopacity and microhardness changes and effect of X-ray operating voltage in resin based materials before and after the expiration date. Mater Res. 2004; 7 (3): 409-412.

Bahadori F., Kocyigit A., Onyuksel H., Dag A., Topcu G. Cytotoxic, apoptotic and genotoxic effects of lipid-based and polymeric nano micelles, an in vitro evaluation. Toxics. 2018; 6 (1): 7-26.

Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., Boyd M. R. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI. 1990; 82 (13): 1107-1112.

Savale S. K. Sulforhodamine B (SRB) Assay Of curcumin loaded nanoemulsion by using glioblastoma cell line. AJBR. 2017; 3 (3): 26-30.

Orellana E. A., Kasinski A. L. Sulforhodamine B (SRB) Assay in cell culture to investigate cell proliferation. Bio Protoc. 2016; 6 (21): 1984-1992.

ISO 10993-5:2009. Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity.

Kim M., Park S. Comparison of premolar cuspal deflection in bulk or in incremental composite restoration methods. Oper Dent. 2011; 36 (3): 326-334.

Malhotra N., Acharya S. Strategies to overcome polymerization shrinkage-materials and techniques. A Review. Dental Update. 2010; 37 (2): 115-125.

Versluis A., Douglas W. H., Cross M., Sakaguchi R. L. Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res. 1996; 75 (3): 871-878.

Czasch P., Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig. 2013; 17 (1): 227-235.

Bucuta S., Ilie N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. 2014; 18 (8): 1991-2000.

Koulaouzidou E. A , Helvatjoglu-Antoniades M., Palaghias G., Karanika-Kouma A., Antoniades D. Cytotoxicity of dental adhesives in vitro. Eur J Dent. 2009; 3 (1): 3-9.

Schweikl H., Spagnuolo G., Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006; 85 (10): 870-877.

Reichl F. X., Simon S., Esters M., Seiss M., Kehe K., Kleinsasser N., Hickel R. Cytotoxicity of dental composite (co) monomers and the amalgam component Hg 2+ in human gingival fibroblasts. Arch Toxicol. 2006; 80 (8): 465-472.

Bakopoulou A., Papadopoulos T., Garefis P. Molecular toxicology of substances released from resin-based dental restorative materials. IJMS. 2009; 10 (9): 3861-399.

Imazato S., Horikawa D., Nishida M., Ebisu S. Effects of monomers eluted from dental resin restoratives on osteoblast-like cells. J Biomed Mater Res B Appl Biomater. 2009; 88 (2): 378-386.

Moharamzadeh K., Van Noort R., Brook I. M., Scutt A. M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent Mater. 2007; 23 (1): 40-44.

Schuster G. S., Lefebvre C. A., Wataha J. C., White S. N. Biocompatibility of posterior restorative materials. J Calif Dent Assoc. 1996; 24 (9): 17-31.

Pizzoferrato A., Ciapetti G., Stea S., Cenni E., Arciola C. R., Granchi D., Savarino L. Cell culture methods for testing biocompatibility. Clin Mater. 1994; 15 (3): 173-190.

Al-Hiyasat A., Darmani H., Milhem M. Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Investig. 2005; 9 (1): 21-25.

Paula A., Laranjo M., Marto C. M., Abrantes A. M., Casalta-Lopes J., Gonçalves A. C., Sarmento-Ribeiro A. B., Ferreira M. M., Botelho M. F., Carrilho E. Biodentine™ Boosts, WhiteProRoot®MTA Increases and Life® Suppresses Odontoblast Activity. Materials. 2019; 12 (7): 1184-1200.

Papazisis K. T., Geromichalos G. D., Dimitriadis K. A., Kortsaris A. H. Optimization of the sulforhodamine B colorimetric assay. J Immunol Methods. 1997; 208 (2): 151-158.

Vichai V., Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006; 1 (3): 1112-1126.

Schubert A., Ziegler C., Bernhard A., Bürgers R., Miosge N. Cytotoxic effects to mouse and human gingival fibroblasts of a nanohybrid ormocer versus dimethacrylate-based composites. Clin Oral Investig. 2019; 23 (1): 133-139.

Lim S. M., Yap A., Loo C., Ng J., Goh C. Y., Hong C., Toh W. S. Comparison of cytotoxicity test models for evaluating resin-based composites. HET. 2017; 36 (4): 339-348.

Wataha J. C., Lockwood P. E., Bouillaguet S., Noda M. In vitro biological response to core and flowable dental restorative materials. Dent Mater. 2003; 19 (1): 25-31.

Eliguzeloglu Dalkilic E., Donmez N., Kazak M., Duc B., Aslantas A. Microhardness and water solubility of expired and non-expired shelf-life composites. IJAO. 2019; 42 (1): 25-30.

Ilie N., Keßler A., Durner J. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites. J Dent. 2013; 41 (8): 695-702.

Flury S., Hayoz S., Peutzfeldt A., Hüsler J., Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater. 2012; 28 (5): 521-528.

Moszner N., Fischer U. K., Ganster B., Liska R., Rheinberger V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater. 2008; 24 (7): 901-907.

Fujibayashi M., Fujibayashi K., Ishimaru K., Takahashi N., Kohno A., Norihiko M, Masaaki O., Hirokazu I., Atsushi K. Newly developed curing unit using blue light-emitting diodes. Dent Jap. 1998; 34: 49-53.

Tarle Z., Meniga A., Knezevic A., Sutalo J., Ristić M., Pichler G. Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit. J Oral Rehabil. 2002; 29 (7): 662-667.

Hofmann N., Hugo B., Klaiber B. Effect of irradiation type (LED or QTH) on photo activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur J Oral Sci. 2002; 110 (6): 471-479.

Atai M., Motevasselian F. Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites. Clin Oral Investig. 2009; 13 (3): 309-316.

Spranley T. J., Winkler M., Dagate J., Oncale D., Strother E. Curing light burns. Gen Dent. 2012; 60 (4): 210-214.

Comments

Downloads

Download data is not yet available.