Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Depth of Cure, Mechanical Properties and Morphology of Dual-Cure Bulk-Fill Composites
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Resin composite; Fourier-transform infrared spectroscopy; Microhardness; Compression strength; Scanning electron microscopy; Degree of conversion.
Resina compuesta; Espectroscopia infrarroja de Fourier; Microdureza; fuerza comprensiva; Microscopía electrónica de barrido; Grado de conversión.

How to Cite

Sarialioglu Gungor, A., Durmus, A., Zengin Kurt, B., Köymen, S. S., & Dönmez, N. (2022). Depth of Cure, Mechanical Properties and Morphology of Dual-Cure Bulk-Fill Composites. Odovtos - International Journal of Dental Sciences, 25(1), 72–87. https://doi.org/10.15517/ijds.2022.52970

Abstract

This study evaluated selected structural and physical properties, such as degree of conversion (DC), Vickers hardness (VHN), and compression strength (CS), of three new dual-cure bulk-fill resin-based composites (RBCs; ACTIVA, HyperFIL, and Fill-Up) and compared them to those of a conventional RBC (Filtek Z250) at three clinically relevant depths. Samples (n=180) were prepared in three depths (2,4, and 6mm). Fourier-transform infrared spectroscopy (FTIR) analysis and VHN and CS tests were performed. The DC value was calculated by considering the relative change in the aliphatic C=C peaks. The fractured surfaces of representative samples were characterized using scanning electron microscopy (SEM). Data were statistically evaluated using two-way analysis of variance and post hoc Bonferroni tests (p<0.05). According to the VHN results, Filtek Z250 showed the highest bottom/top hardness ratio (97.94±1.01) at 2mm thickness and ACTIVA showed the lowest bottom/top hardness ratio (43.48±5.64) at 6mm thickness (p<0.001). According to the FTIR results, the DC decreased with increasing thickness in all materials (p<0.05). Filtek Z250 showed the highest (301±12.4 MPa) and ACTIVA exhibited the lowest (232±17.2 MPa) CS values at 2mm thickness (p<0.05). The lowest CS values were obtained for ACTIVA, and the highest values were obtained for Filtek Z250 for samples with thicknesses of 4 and 6mm, respectively (p<0.05). The structural features of restorative composites, such as the resin chemistry and filler type and content, and the operational parameters (i.e., material thickness and curing conditions) strongly affect crosslinking reactions and thus the DC, VHN, and CS values.

https://doi.org/10.15517/ijds.2022.52970
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

AlQahtani M.Q., Michaud P.L., Sullivan B., Labrie D., AlShaafi M.M., Price R.B. Effect of High Irradiance on Depth of Cure of a Conventional and a Bulk Fill Resin-based Composite. Oper Dent. 2015; 40 (6): 662-72.

Santin D.C., Velo M., Camim F.D.S., Brondino N.C.M., Honorio H.M., Mondelli R.F.L. Effect of thickness on shrinkage stress and bottom-to-top hardness ratio of conventional and bulk-fill composites. Eur J Oral Sci. 2021; 129 (6): e12825.

Fronza B.M., Rueggeberg F.A., Braga R.R., Mogilevych B., Soares L.E., Martin A.A., et al. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater. 2015; 31 (12): 1542-51.

Fronza B.M., Ayres A., Pacheco R.R., Rueggeberg F.A., Dias C., Giannini M. Characterization of Inorganic Filler Content, Mechanical Properties, and Light Transmission of Bulk-fill Resin Composites. Oper Dent. 2017; 42 (4): 445-55.

Jang J.H., Park S.H., Hwang I.N. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent. 2015; 40 (2): 172-80.

Price R.B., Rueggeberg F.A., Harlow J., Sullivan B. Effect of mold type, diameter, and uncured composite removal method on depth of cure. Clin Oral Investig. 2016; 20 (7): 1699-707.

Reis A.F., Vestphal M., Amaral R.C.D., Rodrigues J.A., Roulet J.F., Roscoe M.G. Efficiency of polymerization of bulk-fill composite resins: a systematic review. Braz Oral Res. 2017; 31 (suppl 1): e59.

Benetti A.R., Havndrup-Pedersen C., Honore D., Pedersen M.K., Pallesen U. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent. 2015; 40 (2): 190-200.

Toh W.S., Yap A.U., Lim S.Y. In Vitro Biocompatibility of Contemporary Bulk-fill Composites. Oper Dent. 2015; 40 (6): 644-52.

de Mendonca B.C., Soto-Montero J.R., de Castro E.F., Kury M., Cavalli V., Rueggeberg F.A., et al. Effect of extended light activation and increment thickness on physical properties of conventional and bulk-filled resin-based composites. Clin Oral Investig. 2022; 26 (3): 3141-50.

Ferracane J.L., Mitchem J.C., Condon J.R., Todd R. Wear and marginal breakdown of composites with various degrees of cure. J Dent Res. 1997; 76 (8): 1508-16.

Stansbury J.W. Curing dental resins and composites by photopolymerization. J Esthet Dent. 2000; 12 (6): 300-8.

Kwaśny M,. Bombalska A., Obroniecka K. A reliable method of measuring the conversion degrees of methacrylate dental resins. Sensors (Basel). 2022; 10; 22 (6): 2170.

da Silva E.M., Almeida G.S., Poskus L.T., Guimaraes J.G. Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite. J Appl Oral Sci. 2008; 16 (2): 161-6.

Schneider L.F., Pfeifer C.S., Consani S., Prahl S.A., Ferracane J.L. Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater. 2008; 24 (9): 1169-77.

Opdam N.J., Bronkhorst E.M., Roeters J.M., Loomans B.A. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater. 2007; 23 (1): 2-8.

Cebe M.A., Cebe F., Cengiz M.F., Cetin A.R., Arpag O.F., Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater. 2015; 31 (7): e141-9.

Tanaka K., Taira M., Shintani H., Wakasa K., Yamaki M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J Oral Rehabil. 1991; 18 (4): 353-62.

Vankerckhoven H., Lambrechts P., van Beylen M., Davidson C.L., Vanherle G. Unreacted methacrylate groups on the surfaces of composite resins. J Dent Res. 1982; 61 (6): 791-5.

Hayashi J., Espigares J., Takagaki T., Shimada Y., Tagami J., Numata T., Chan D., Sadr A. Real-time in-depth imaging of gap formation in bulk-fill resin composites. Dent Mater. 2019; 35: 585-96.

Vandewalker J.P., Casey J.A., Lincoln T.A., Vandewalle K.S. Properties of dual-cure, bulk-fill composite resin restorative materials. Gen Dent. 2016; 64 (2): 68-73.

de Mendonça B.C., Soto-Montero J.R., de Castro E.F., Pecorari V.G.A., Rueggeberg F.A., Giannini M. Flexural strength and microhardness of bulk-fill restorative materials. J Esthet Restor Dent. 2021; 33 (4): 628-35.

Bouschlicher M.R., Rueggeberg F.A., Wilson B.M. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent. 2004; 29 (6): 698-704.

Alrahlah A. Diametral tensile strength, flexural strength, and surface microhardness of bioactive bulk fill restorative. J Contemp Dent Pract. 2018; 19 (1): 13-9.

Daabash R., Alshabib A., Alqahtani M.Q,. Price R.B., Silikas N., Alshaafi M.M. Ion releasing direct restorative materials: Key mechanical properties and wear. Dent Mater. 2022 Oct 3:S0109-5641 (22) 00274-3.

Hughes K.O., Powell K.J., Hill A.E., Tantbirojn D., Versluis A. Delayed Photoactivation of Dual-cure Composites: Effect on Cuspal Flexure, Depth-of-cure, and Mechanical Properties. Oper Dent. 2019; 44 (2): 97-104.

Borges A., Chase M., Niederberger A., Gonzalez M., Ribeiro A., Pascon F., et al. A Critical Review on the Conversion Degree of Resin Monomers by Direct Analyses. Brazilian Dental Science. 2013;16.

Yokesh C.A., Hemalatha P., Muthalagu M., Justin M.R. Comparative Evaluation of the Depth of Cure and Degree of Conversion of Two Bulk Fill Flowable Composites. J Clin Diagn Res. 2017; 11 (8): ZC86-ZC9.

Nascimento A.S., Lima D.B., Fook M.V.L., Albuquerque M.S., Lima E.A., Sabino M.A., et al. Physicomechanical characterization and biological evaluation of bulk-fill composite resin. Braz Oral Res. 2018; 32: e107.

Lovell L.G., Newman S.M., Bowman C.N. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res. 1999; 78 (8): 1469-76.

Fraga M.A.A., Correr-Sobrinho L., Sinhoreti M.A.C., Carletti T.M., Correr A.B. Do dual-cure bulk-fill resin composites reduce gaps and improve depth of cure. Braz Dent J. 2021; 32 (5): 77-86.

Lindberg A., Peutzfeldt A., van Dijken J.W. Curing depths of a universal hybrid and a flowable resin composite cured with quartz tungsten halogen and light-emitting diode units. Acta Odontol Scand. 2004; 62 (2): 97-101.

Finan L., Palin W.M., Moskwa N., McGinley E.L., Fleming G.J. The influence of irradiation potential on the degree of conversion and mechanical properties of two bulk-fill flowable RBC base materials. Dent Mater. 2013; 29 (8): 906-12.

Sideridou I., Tserki V., Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002; 23 (8): 1819-29.

Yoon T.H., Lee Y.K., Lim B.S., Kim C.W. Degree of polymerization of resin composites by different light sources. J Oral Rehabil. 2002; 29 (12): 1165-73.

Halvorson R.H., Erickson R.L., Davidson C.L. The effect of filler and silane content on conversion of resin-based composite. Dent Mater. 2003; 19 (4): 327-33.

Kaya M.S., Bakkal M., Durmus A., Durmus Z. Structural and mechanical properties of a giomer-based bulk fill restorative in different curing conditions. J Appl Oral Sci. 2018; 26: e20160662.

Ilie N. Microstructural dependence of mechanical properties and their relationship in modern resin-based composite materials. J Dent. 2021;114:103829.

Heintze S.D., Ilie N., Hickel R., Reis A., Loguercio A., Rousson V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review. Dent Mater. 2017; 33 (3): e101-e14.

Poiate I.A., Vasconcellos A.B., Poiate Junior E., Dias K.R. Stress distribution in the cervical region of an upper central incisor in a 3D finite element model. Braz Oral Res. 2009; 23 (2): 161-8.

Sana S., Kondody R.T., Talapaneni A.K., Fatima A., Bangi S.L. Occlusal stress distribution in the human skull with permanent maxillary first molar extraction: A 3-dimensional finite element study. Am J Orthod Dentofacial Orthop. 2021; 160 (4): 552-9.

Campaner L.M., Ribeiro A.O., Tribst J.P.M., Borges A.L., Di Lauro A.E., Lanzotti A., et al. Loading stress distribution in posterior teeth restored by different core materials under fixed zirconia partial denture: A 3D-FEA study. Am J Dent. 2021; 34 (3): 157-62.

Bicalho A.A., Tantbirojn D., Versluis A., Soares C.J. Effect of occlusal loading and mechanical properties of resin composite on stress generated in posterior restorations. Am J Dent. 2014; 27 (3): 129-33.

Khosravani M.R. Mechanical behavior of restorative dental composites under various loading conditions. J Mech Behav Biomed Mater. 2019;93:151-7.

Scribante A., Bollardi M., Chiesa M., Poggio C., Colombo M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed Res Int. 2019; 2019: 5109481.

Leprince J.G., Palin W.M., Vanacker J., Sabbagh J., Devaux J., Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014; 42 (8): 993-1000.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 CC-BY-NC-SA 4.0

Downloads

Download data is not yet available.