Abstract
To determine the surface microhardness of white portland cement associated with niobium nanoparticles, white portland cement associated with zirconium nanoparticles, and mineral trioxide aggregate. The present study is an experimental in-vitro study. The sample consisted of 03 study groups. These were divided into 09 subgroups of 04 hours, 14 days and 28 days. The instrument used to record the surface mechanical microhardness was the Vickers microdurometer. The Shapiro-Wilk statistical analysis was then performed to identify the normality of the data. The Anova test was applied to compare between the three groups and then the Tukey test for multiple comparisons with a 95% confidence level. White Portland cement associated with zirconium nanoparticles had the highest hardness value (p<0.05), followed by white Portland cement associated with niobium nanoparticles and aggregate control cement of mineral trioxide. The lowest value of surface microhardness was obtained by the addition of mineral trioxide (p<0.05). Surface microhardness values were significantly higher at 28 days than at 04 hours for all groups evaluated. White Portland cement with/without nanoparticulate additives generated higher surface microhardness than the control group added mineral trioxide in the evaluation periods.
References
Torabinejad M. Historical and contemporary perspectives on root-end filling materials. J Endod. 1993; 19 (8): 432-3.
Prati C., Gandolfi M.G. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dent Mater. 2016; 31 (4): 351-70.
Tanomaru J.M., Vázquez F.A., Bosso-Martelo R., Bernardi M.I., Faria G. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements. J Appl Oral Sci. 2017; 24 (3): 204-10.
Vazquez F., Tanomaru-Filho M., Chávez G.M., Bosso-Martelo R., Basso-Bernardi MI. Effect of Silver Nanoparticles on Physicochemical and Antibacterial Properties of Calcium Silicate Cements. Braz Dent J. 2016 Sep-Oct; 27 (5): 508-514.
Bosso-Martelo R., Guerreiro-Tanomaru J.M., Viapiana R., Berbert F.L., Duarte M.A., Tanomaru-Filho M. Physicochemical properties of calcium silicate cements associated with microparticulate and nanoparticulate radiopacifiers. Clin Oral Investig. 2016; 20 (1): 83-90
Kaur M., Singh H., Dhillon J.S., Batra M., Saini M. MTA versus Biodentine: Review of Literature with a Comparative Analysis. J Clin Diagn Res. 2017; 11 (8): 1-5.
Formosa L.M., Mallia B., Camilleri J. A quantitative method for determining the anti out characteristics of cement-based dental materials including mineral trioxide aggregate. Int Endod J. 2017; 46 (2): 179-86.
Zanza A., Reda R., Vannettelli E., Donfrancesco O., Relucenti M., Bhandi S., Patil S., Mehta D., Krithikadatta J., Testarelli L. The Influence of Thermomechanical Compaction on the Marginal Adaptation of 4 Different Hydraulic Sealers: A Comparative Ex Vivo Study. Journal of Composites Science. 2023; 7 (1): 10.
Parirokh M., Torabinejad M., Dummer P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J. 2018; 51 (2): 177-205.
Camilleri J. The chemical composition of mineral trioxide aggregate. J Conserv Dent. 2018; 11 (4): 141-3.
Dong X., Xu X. Bioceramics in Endodontics: Updates and Future Perspectives. Bioengineering (Basel). 2023; 10 (3): 354.
Prasad A., Pushpa S., Arunagiri D., Sawhny A., Misra A., Sujatha R. A comparative evaluation of the effect of various additives on selected physical properties of white mineral trioxide aggregate. J Conserv Dent. 2018; 18 (3): 237-41.
Torabinejad M., Parirokh M., Dummer P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J. 2018; 51 (3): 284-317.
Rebolledo S., Alcántara-Dufeu R., Luengo Machuca L., Ferrada L., Sánchez-Sanhueza G.A. Real-time evaluation of the biocompatibility of calcium silicate-based endodontic cements: An in vitro study. Clin Exp Dent Res. 2023; 9 (2): 322-331.
Bossù M., Mancini P., Bruni E., et al. Biocompatibility and Antibiofilm Properties of Calcium Silicate-Based Cements: An In Vitro Evaluation and Report of Two Clinical Cases. Biology (Basel). 2021; 10 (6): 470.
Forough Reyhani M., Hosseinian Ahangarnezhad S., Ghasemi N., Salem Milani A. Effects of various liquid-to-powder ratios on the compressive strength of calcium enriched mixture: Original research. J Dent Res Dent Clin Dent Prospects. 2021; 15 (2): 129-132.
Sobhnamayan F., Adl A., Shojaee N.S., Sedigh-Shams M., Zarghami E. Compressive Strength of Mineral Trioxide Aggregate and Calcium-enriched Mixture Cement Mixed with Propylene Glycol. Iran Endod J. 2017 Fall; 12 (4): 493-496.
Sheykhrezae M.S., Meraji N., Ghanbari F., Nekoofar M.H., Bolhari B., Dummer P.M.H. Effect of blood contamination on the compressive strength of three calcium silicate-based cements. Aust Endod J. 2018 Dec; 44 (3): 255-259.
Tomás-Catalá C.J., Collado-González M., García-Bernal D., et al. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 2018; 44 (1):126-132.
Kato G., Gomes P.S., Neppelenbroek K.H., Rodrigues C., Fernandes M.H., Grenho L. Fast-setting calcium silicate-based pulp capping cements-integrated antibacterial, irritation and cytocompatibility assessment. Materials (Basel). 2023; 16 (1): 450.
Arnez M.M., Castelo R., Ugarte D., Almeida L.P.A., Dotta T.C., Catirse A.B.C.E.B. Microhardness and surface roughness of Biodentine exposed to mouthwashes. J Conserv Dent. 2021 Jul-Aug; 24 (4): 379-383.
Subramanyam D., Vasantharajan M. Effect of Oral Tissue Fluids on Compressive Strength of MTA and Biodentine: An In Vitro Study. J Clin Diagn Res. 2017; 11 (4): 94-96.
Song W., Li S., Tang Q., Chen L., Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate-based bioceramics in endodontics (Review). Int J Mol Med. 2021; 48 (1): 128.
Ashofteh Yazdi K., Ghabraei S., Bolhari B., et al. Microstructure and chemical analysis of four calcium silicate-based cements in different environmental conditions. Clin Oral Investig. 2019; 23 (1): 43-52.
Chang S.W., Gaudin A., Tolar M., Oh S., Moon S.Y., Peters O.A. Physicochemical and biological properties of four calcium silicate-based endodontic cements. J Dent Sci. 2022; 17 (4): 1586-1594.
Mahmoud O., Al-Meeri W.A., Farook M.S., Al-Afifi N.A. Calcium Silicate-Based Cements as Root Canal Medicinament. Clin Cosmet Investig Dent. 2020; 12: 49-60.
Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007; 40 (6): 462-70.
Bayraktar K., Basturk F., Turkaydin Di, Gunday M. Long-term effect of acidic pH on the surface microhardness of ProRoot mineral trioxide aggregate, Biodentine, and total fill root repair material putty. Dent Res J (Isfahan). 2021; 18 (1): 6-12.
Hwang Y.C., Lee S.H., Hwang I.N., Kang I.C., Kim M.S., Kim S.H., et al. Chemical composition, radiopacity, and biocompatibility of Portland cement with bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 96-102.
Jafari F., Jafari S. Composition and physicochemical properties of calcium silicate based sealers: A review article. J Clin Exp Dent. 2017; 9 (10): 1249-1255.
Dawood A.E., Manton D.J., Parashos P., et al. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements. Aust Dent J. 2015; 60 (4): 434-444.
Tanomaru-Filho M., Garcia A.C., Bosso-Martelo R., Berbert F.L., Nunes Reis J.M., Guerreiro-Tanomaru J.M. Influence of addition of calcium oxide on physicochemical properties of Portland cement with zirconium or niobium oxide. J Conserv Dent. 2015; 18 (2): 105-108.
Quea-Cahuana E., Ramirez W., Manrique Coras M., Antimicrobial Efficacy of Portland Cement Compared to Mineral Trioxide Aggregate Against Enterococcus faecalis and Candida albicans. Int. J. Odontostomat. 2022: 16 (1): 21-30.
Villavicencio M.S., Cahuana E.Q., Ramirez W., Delgado L. Comparative Evaluation of Physicomechanical Properties and Antimicrobial Activity of White Portland Micro- and Nanoparticulate Peruvian Cement, Mineral Trioxide Aggregate, and Neomineral Trioxide Aggregate. J Contemp Dent Pract. 2022; 23 (10): 965-970.