Agronomía Costarricense ISSN Impreso: 0377-9424 ISSN electrónico: 2215-2202

OAI: https://revistas.ucr.ac.cr/index.php/agrocost/oai
Parámetros para el manejo del agua en tomate y chile dulce hidropónico bajo invernadero
PDF
HTML
EPUB

Palabras clave

Manejo del riego
potencial hídrico
humedad del sustrato
intervalo hídrico óptimo
punto de relleno.

Cómo citar

Soto Bravo, F. (2018). Parámetros para el manejo del agua en tomate y chile dulce hidropónico bajo invernadero. Agronomía Costarricense, 42(2). https://doi.org/10.15517/rac.v42i2.33779

Resumen

El intervalo hídrico óptimo, basado en umbrales de humedad volumétrica en el sustrato (θvs), permite un control preciso del volumen y la frecuencia de riego. Se determinaron los umbrales de θvs para el manejo del riego en los cultivos de tomate y chile dulce en fibra de coco en los invernaderos de la Estación Experimental Agrícola Fabio Baudrit Moreno (EEAFBM), Alajuela, Costa Rica, en el 2015. En ambos cultivos se aplicó un tratamiento con riego (CR) y otro sin riego (SR), en un diseño completamente aleatorio. Se evaluó el contenido de θvs, el potencial hídrico (ψh) y la temperatura de la hoja (Th) y se estimó la evapotranspiración de ambos cultivos mediante un balance de agua en el sustrato. El umbral de θvs en la fibra de coco, para el manejo del riego en ambos cultivos, podría establecerse en el rango de agua fácilmente disponible de 56% a 38%, donde los valores de ψh fueron inferiores al umbral crítico de < -1 MPa reportado por diferentes autores y las Th fueron similares a la temperatura del aire. En los tratamientos CR, los promedios de θvs en tomate (44%) y chile dulce (50%) estuvieron dentro del rango de agua fácilmente disponible (38% a 56%) de la fibra de coco. En las pruebas SR de ambos cultivos, la θvs descendió a un valor promedio de 32%, próximo al punto de marchitez permanente. En ψh y Th las diferencias entre experimentos fueron de mayor magnitud al m.d. del día 2, donde los tratamientos CR fueron -0,84 MPa en tomate y -0,98 MPa en chile dulce; mientras que en las prácticas SR fueron -1,24 MPa en tomate y -1,3 MPa en chile dulce. Al m.d. del día 2, las Th de ambos cultivos en los diseños SR y CR fueron similares e inferiores, respectivamente, a la temperatura del aire (32,9°C).
https://doi.org/10.15517/rac.v42i2.33779
PDF
HTML
EPUB

Citas

Abad, M; Noguera, P; Puchades, R; Maquieira, A; Noguera, V. 2002. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology 82:241-245.

Ali, MH. 2010. Crop Water Requirement and Irrigation Scheduling. En Fundamentals of irrigation and On-farm water management (1):399-452.

Allen, RG; Pereira, LS; Raes, D; Smith, M. 2006. Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos. Estudio FAO-56. Riego y Drenaje. Roma, Italia. 323 p.

Ansorena, MJ. 1994. Sustratos. Propiedades y caracterización. Madrid, España. Ed. Mundi Prensa. 167 p.

Arguedas, F; Lea-Cox, J; Méndez, CH. 2006. Calibration of ECH20 Probe Sensors to Accurately Monitor Water Status of Traditional and Alternative Substrates for Container Production. SNA Research Conference: Water Management 51:501–505. Ben-Asher, J; Phene, CJ; Kinarti, A. 1992.

Canopy temperature to assess daily evapotranspiration and management of high frequency drip irrigation systems. Agricultural Water Management 22(4):379- 390.

Capraro, F; Tosetti, S: Vita, F; Patiño, D; Schugurensky, C; Fullana, R. 2008. Jornadas de Inf. Ind. - Agroinformática. Sistema de monitoreo continuo de la humedad en suelo para el control de riego en un olivar (Olea europaea L.) empleando LabVIEW. 37°. San Juan Argentina. p. 28-42.

Chen, J; Kang, S; Du, T; Qiu, R; Guo, P; Chen, R. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management 129:152- 162.

Christiansen, JE. 1942. Irrigation by Sprinkling. California Agriculture Experiment Station Bulletin Nº. 670. 126 p. Consultado 20 set. 2017. Disponible en https:// archive.org/details/irrigationbyspri670chri

Coates, RW; Delwiche, MJ; Broad, A; Holler, M. 2013. Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture. Computers and Electronics in Agriculture 96:13-22.

Corell, M; Girón, IF; Galindo, A; Torrecillas, A; Torres- Sánchez, R. 2014. Using band dendrometers in irrigation scheduling Influence of the location inside the tree and comparison with point dendrometer. Agricultural Water Management 142:29-37.

Dorji, K; Behboudian, MH. 2005. Water relations, growth , yield , and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Scientia Horticulturae 104:137-149.

Elliott, J; Deryng, D; Müller, C; Frieler, K; Konzmann, M; Gerten, D; Glotter, M; Flörkeg, M; Wadah, I; Besta, N; Eisnerg, S; Feketei, BM; Folberthj, C; Fostera, I; Goslingk, SN; Haddelandl, I; Khabarovm, N; Ludwign, F; Masakio, Y; Olinp, S; Rosenzweigc, C; Ruanec, AC; Satohr, Y; Schmids, E; Stacket, T; Tangu, Q; Wisser, D. 2014. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences 111(9):3239-3244.

Ferreyra, R; Selles, G; Maldonado, P; Celedón, J; Gil, P. 2007. Efecto del clima, de las características de la hoja y de la metodología de medición en el potencial hídrico xilemático en palto (Persea americana Mill.). Agricultura técnica 67(2):182-188.

Gallardo, M; Soto, F; Giménez, C; Martínez-Gaitán, C; Thompson, RB. 2011. Simulación de la productividad y dinámica del agua y N en cultivo de pimiento bajo invernadero con EU-ROTATE_N. Avances en nuevas estrategias de fertilización 56:17-22.

Galvez, PR; Callejas, RR; Reginato, MG. 2011. Comparación de la cámara de presión tipo Scholander modelo Pump-up respecto a la cámara de presión tradicional en vides de mesa. Idesia 29(2):175-179.

García-Petillo, M. 2008. Manejo del riego: uso de instrumentos de medición de agua del suelo y del estado hídrico de los cultivos, presentación de casos de estudio incluso en riego deficitario. Jornadas sobre “ Ambiente y Riegos : Modernización y Ambientalidad”. 2008. La Antigua, Guatemala. 20 p.

García, AL; Marcelis, L; Nicolas, N; Martínez, V. 2007. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply. Biologia plantarum 51(4):707-712.

Goumopoulos, C; Flynn, BO; Kameas, A. 2014. Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Computers and electronics in agriculture 105:20-33.

Incrocci, L; Marzialetti, P; Incrocci, G; Di, A; Balendonck, J; Bibbiani, C; Spagnol, S; Pardossi, A. 2014. Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops. Agricultural Water Management 131:30-40.

Kirda, C; Cetin, M; Dasgan, Y; Topcu, S; Kaman, H; Ekici, B; Derici, MR; Ozguven, AI. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69:191-201.

Kușçu, H; Turhan, A: Demir, A. 2014. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agricultural Water Management 133:92-103.

López, LR; Ramírez, A; Peña, V; Alberto, M; Cruz, L. 2009. Índice de estrés hídrico como un indicador del momento de riego en cultivos agrícolas. Agric. Téc. Méx. 35(1):92-106.

Navarro-Hellin, H; Torres-Sánchez, R; Soto-Valles, F; Albaladejo-Pérez, C; López-Riquelme, JA; Domingo- Miguel, R. 2015. A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management 151:64-74.

Pardossi, A; Incrocci, L. 2011. Traditional and New Approaches to Irrigation Scheduling in Vegetable Crops. Hortechnology 21(3):309-313.

Pardossi, A; Incrocci, L; Incrocci, G; Malorgio, F; Battista, P; Bacci, L; Rapi, B; Marzialetti, P; Hemming, J; Balendonck, J. 2009. Root Zone Sensors for Irrigation Management in Intensive Agriculture. Sensors 9:2809-2835.

Pilatti, MA; Orellana, JD; Imhoff, SC; Pires, DA. 2012. Review of the critical limits of the optimal hydric interval. Antecedentes del IHO : agua útil y Non Limiting Water Range (NLWR) agua comenzando a afectarse el crecimiento del cultivo otras propiedades físicas sobre el crecimiento de los cul- no reduzca. Ciencia del Suelo 30(1):9-21.

Rhie, YH; Kim, J. 2017. Changes in Physical Properties of Various Coir Dust and Perlite Mixes and Their Capacitance Sensor Volumetric Water Content Calibrations. Hort Science 52(1):162-166.

San Martín, JP; Acevedo, E. 2001. Temperatura de canopia, CWSI y rendimiento en genotipos de trigo. Laboratorio de Relación Suelo-Agua-Planta. Universidad de Chile, Santiago de Chile. 61 p.

Soto, F; Gallardo, M; Giménez, C; Peña-Fleitas, T; Thompson, RB. 2014. Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation. Agricultural Water Management 132:46-59.

Starr, JL; Paltineanu, IC. 1998. Soil water dynamics using multisensor capacitance probes in nontraffic interrows of corn. Soil Sci Soc Amer J. 62(1):114-122.

Steel, RGD; Torrie, JH. 1980. Principles and Procedures of Statistics. Second edition New York. McGraw- Hill. 633 p.

Thompson, RB; Gallardo, M; Valdez, LC; Fernández, MD. 2007a. Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agricultural Water Management 92:13-28.

Thompson, RB; Gallardo, M; Valdez, LC; Fernández, MD. 2007b. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agricultural Water Management 88:147-158.

Tilman, D; Cassman, KG; Matson, PA; Naylor, R; Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418(6898):671-677.

Van Der Westhuizen, RJ. 2009. Irrigation scheduling of tomatoes (Lycopersicon esculentum Mill.) and cucumbers (Cucumis sativus L.) grown hydroponically in coir. Disertation Ph.D. Stellenbosch, South Africa. Stellenbosch University. 139 p.

Van Iersel, MW; Dove, S; Kang, JG; Burnett, SE. 2010. Growth and water use of petunia as affected by substrate water content and daily light integral. Hort Science 45(2):277-282.

Vence, LB; Valenzuela, OR; Svartz, HA; Conti, ME. 2013. Elección del sustrato y manejo del riego utilizando como herramienta las curvas de retención de agua. Ciencia del Suelo 31(2):153-164.

Vellidis, G; Tucker, M; Perry, C; Kvien, C; Bednarz, C. 2008. A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture 61:44-50.

WWAP (United Nations World Water Assessment Programme). 2016. The United Nations World Water Development Report 2016: Water and Jobs. Paris, Francia. UNESCO (Organización de las Naciones Unidas para la Educación).167 p.

Zar, JH. 1999. Biostatistical Analysis. Cuarta edición. New Jersey. Prentice Hall. 663 p. Appendix A.

Zegbe, JA; Behboudian, MH. 2006. Respuesta del tomate para proceso al riego parcial de la raíz. TERRA Latinoamericana 25:61-67.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.