Thermal behavior of a greenhouse located in Fabio Baudrit Moreno Experimental Station, Alajuela, Costa Rica.

Authors

  • Alberto José López-López Universidad de Costa Rica, Escuela de Ingeniería Agrícola
  • Carlos Benavides-León Universidad de Costa Rica, Escuela de Ingeniería Agrícola

DOI:

https://doi.org/10.15517/am.v25i1.14212

Keywords:

protected environments, climate control in protected environments, selection of crops in protected environments, steady modeling.

Abstract

The following study presents a simulation of the temperature inside a greenhouse, in order to evaluate thermal behavior according to crop requirements. The model was calibrated using climatic data during four months divided in two intervals (December 2009 and August, September and October 2010) and validated the interactions between the greenhouse´s atmospheric conditions, the crops requirements and the external climatic factors such as radiation, temperature, relative humidity, wind speed and direction. The internal temperature was compared with the optimal recommended by the literature for different crops, i.e. sweet pepper (Capsicum annuum), tomato (Solanum lycopersicum) and melon (Cucumis melo). The results generated a relative root medium square error of 2.99% and 4.69% for the simulated temperature in two different intervals. This showed that it is possible to predict the thermal behavior of the greenhouse, and if the location, overall design and climate control equipment are suitable for the chosen crops. The methodology also allowed the assessment for different type of crops within the protected environment and may be applied to evaluate the technical feasibility to implement improvements in the design and equipment selection, in order to achieve the optimum conditions required for the specific crops. It was concluded that the facility is suitable to produce melon and sweet pepper to a lesser degree, and was not recommended for tomato production during certain months.

Downloads

Download data is not yet available.

References

Adams, S.R., K.E. Cockshull, y C.R.J. Cave. 2001. Effect of

temperature on the growth and development of tomato fruits. Annals of Botany 88(5):869-877.

Alas, M. 2003. Estructura de costos, para la producción

de hortalizas en invernaderos de la cuenca del Río Reventazón, Turrialba, Costa Rica. Tesis de Mag. Sc., CATIE, Turrilaba, Costa Rica.

Albright, L.D. 1990. Environment control for animals and

plants. ASAE, St. Joseph, MO, USA.

Barquero, G. 2001. Producción en ambiente controlado. Colegio de Ingenieros Agrónomos, San José, Costa Rica.

Castellanos, J.Z. 2009. Manual de producción de tomate

en invernadero. Intagri, Celaya, Guanajuato, México.

Costa, E., P. Leal, y R. Carmo. 2004. Modelo de simulação

da temperatura e umidade relativa do ar no interior de estufa plástica. Eng. Agríc., Jaboticabal 24(1):57-67.

Hellickson, M. 1983. Ventilation of agricultural structures.

American Society of Agricultural Engineers, St. Joseph, Missouri, USA.

IMN (Instituto Meteorológico Nacional). 2012. Información

meteorológica de la estación climática. Series horarias

correspondiente al periodo de mayo de 2009 a octubre 2011. Estación Experimental Fabio Baudrit Moreno, Universidad de Costa Rica, Alajuela, Costa Rica.

Kittas, C., T. Bartzanas, y A. Jaffrin. 2003. Temperature

gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering 85:87-94.

Leal, P., y E. Costa. 2011. Apostilla de ingeniería de confort en cultivo protegido. Universidade Estadual de Campinas, Campinas, Brasil.

López, A.J. 2013. Validación de un modelo matemático

para predecir las condiciones climáticas internas en un invernadero localizado en la zona norte de Cartago, Costa Rica. Tesis de Lic., Universidad de Costa Rica, San José, Costa Rica.

Montero, J. 2006. Evaporative cooling in greenhouses: effect

on microclimate, water use in efficiency and plant response. Acta Hort. 719:373-384.

Pete, M.M., D.H. Willits, y R. Gardner. 1997. Response of ovule development and postpollen production processes in male-sterile tomatoes to chronic, subacute high temperature stress. Journal of Experimental Botany 48(306):101-111

Piscia, D., J.I. Montero, M. Melé, J. Flores, J. Perez-Parra, y E.J. Baeza. 2012. A CFD model to study above roof shade and on roof shade of greenhouses. Dept. of Environmental Horticulture. IRTA, Cabrils Barcelona. Estación Experimental de Cajamar “Las Palmerillas”, El Ejido Almería España.

Serrano, Z. 1994. Construcción de invernaderos. Mundi-Prensa, Madrid, España.

Stanghellini, C. 1987. Transpiration of greenhouse crops; an aid to climate management. Ph. D. Dissertation, Landbouwuniverseit, Wageningen, The Netherland.

Tesi, R. 2001. Medios de protección para la hortoflorofruticultura y el viverismo. 3 ed. Mundi-Prensa, Madrid, España.

Vanthoor, B. 2011. A model-based greenhouse design

method. Ph.D. Dissertation, Wageningen University, The Netherlands.

Zhang J., T. Li, y J. Xu. 2008. Effects of sub-high temperature in daytime from different stages on tomato photosynthesis and yield in greenhouse. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 24(3):193-197.

How to Cite

López-López, A. J., & Benavides-León, C. (2014). Thermal behavior of a greenhouse located in Fabio Baudrit Moreno Experimental Station, Alajuela, Costa Rica. Agronomía Mesoamericana, 25(1), 121–132. https://doi.org/10.15517/am.v25i1.14212