Biochemical characterization of rhizosphere microorganisms from vanilla plants with potential as biofertilizers.


  • Claudia Álvarez-López Universidad Nacional de Colombia, Facultad de Ciencias-Sede Medellín. Laboratorios de Microbiología Industrial y Biología Celular y Molecular.
  • Walter Osorio-Vega Universidad Nacional de Colombia, Facultad de Ciencias-Sede Medellín. Laboratorios de Microbiología Industrial y Biología Celular y Molecular.
  • María Claudia Díez-Gómez Universidad Nacional de Colombia, Facultad de Ciencias Agrarias-Sede Medellín, Departamento de Ciencias Forestales,
  • Mauricio Marín-Montoya Universidad Nacional de Colombia, Facultad de Ciencias-Sede Medellín. Laboratorios de Microbiología Industrial y Biología Celular y Molecular.



cellulytic microorganisms, proteolytic microorganisms, phosphate solubilizers, asymbiotic N2-fixers.


The objective of this study was to evaluate in vitro biochemical activity of rhizosphere microorganisms from vanilla plants with potential as biofertilizers. The taxonomic identity of the most efficient microorganisms was confirmed using phenotypic methods. Isolates were obtained from vanilla plants grown under shade house conditions in the municipality of Sopetrán (Antioquia department, Colombia) during 2011. The most effective solubilizers of inorganic phosphate were bacteria identified as Serratia sp. and Pseudomonas koreensis. The most effective organic-phosphate solubilizing microorganism was the fungus Plectosphaerella cucumerina. In terms of celullose-hydrolytic activity Penicillium griseofulvum and Aspergillus fumigatus stood out as the most effective organisms. Bacteria belonging to the Bacillus cereus complex and to Serratia sp. showed the highest proteolytic/ammonifying activity. Finally, three isolates from Pseudomonas koreensis exhibited the highest nitrogen fixation ability. Moreover the presence of the NifH gene, responsable for this metabolic activity, was confirmed for these bacteria through PCR. The functional diversity of the microorganisms here presented suggests that there is potential for their use as biofertilizers in the vanilla crop.


Download data is not yet available.


Álvarez, C., M. Marín, M.C. Díez, y N.W. Osorio. 2012. Molecular identification of microorganisms associated to the rhizosphere of vanilla and their potential use as biofertilizers. Acta Hortic. 964:107-114.

Anilkumar, A.S. 2004. Vanilla cultivation: A profitable agribased enterprise. Kerala Calling 1:26-30.

Anzai, Y., Y. Kodo, y H. Oyaizu. 1997. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int. J. Syst. Evol. Microbiol. 47:249-251.

Anzai, Y., H. Kim, J.Y. Park, H. Wakabayashi, y H. Oyaizu. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50:1563-1589.

Atkins, S.D., I.M. Clark, D. Sosnowska, P.R. Hirsch, y B.R. Kerry. 2003. Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, Real-Time PCR, Selective Media, and Baiting. Appl. Environ. Microbiol. 69:4788-4793.

Atlas, R., y R. Bartha. 1997. Microbial ecology. Benjamin Cummings, NY, EEUU.

Bar-Yosef, B., R.D. Rogers, J.H. Wolfram, y E. Richman. 1999. Pseudomonas cepacia mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci. Soc. Am. J. 63:1703-1708.

Barea, J.M., M.J. Pozo, R. Azcón, y C. Azcón-Aguilar. 2005. Microbial co-operation in the rhizosphere. J. Exp. Bot. 56:1761-1778.

Barr, M.E. 1990. Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes. Mycotaxon 39(1):43-184.

Bhai, S., y J. Dhanesh. 2008. Occurrence of fungal diseases in vanilla (Vanilla planifolia Andrews) in Kerala. JOSAC 17:140-148.

Capuccino, J.G., y N. Sherman. 2007. Microbiology: a laboratory manual. 9th ed. Benjamin Cummings. NY, USA.

Castro, B.G. 2008. Evaluación del cultivo y producción de vainilla en la zona de Papantla, Veracruz, México. Tesis PhD. Ecología y Manejo de Recursos Naturales, Instituto de Ecología, A.C. México.

Chien, S.H., y L.L. Hammond. 1978. A comparison of various laboratory methods for predicting the agronomic potential of phosphate crops for direct application. Soil Sci. Soc. Am. J. 42:935-939.

Desnoues, N., M. Lin, X. Guo, L. Ma, R. Carreño-López, y C. Elmerich. 2003. Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251-2262.

Döbereiner, J., y J.M. Day. 1976. Associative simbiose in subtropical grasses: characterization of microrganisms and dinitrogens fixing sites. En: W.E. Newton, y C.J. Nyman, editores, Proceedings of the 1st International Symposium on Nitrogen Fixation, Washington State University Press, Pullman. p. 518-538.

Domínguez, R. 2005. Crecimiento y niveles nutrimentales en Vanilla planifolia. Tesis M.Sc. en Ciencias, Colegio de Postgraduados, Montecillo, Texcoco, México.

Frisvad, J.C., y R.A. Samson. 2004. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their myco-toxins. Stud. Mycol. 49:1-173.

Grimont, F., y P.A.D. Grimont. 2006. The genus Serratia. En: M. Dworkin, editor, The Prokaryotes. A handbook on the biology of bacteria. 3rd ed. Springer, New York, EEUU.

Hatayama, K., S. Kawai, H. Shoun, Y. Ueda, y A. Nakamura.

Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int. J. Syst. Evol. Microbiol. 55:1539-1544.

He, X.H. 2007. Biocontrol of root rot disease in Vanilla. Tesis Ph.D., University of Wolverhampton, Reino Unido.

Hofmockel, K.S., N. Fierer, B.J. Colman, y R.B. Jackson. 2010. Amino acid abundance and proteolytic potential in North American soils. Oecol. 163:1069-1078.

Hopkins, D.W. 2007. Carbon mineralization. En: M.R. Carter, y E.G. Gregorich, editores, Soil sampling and methods of analysis. 2nd ed. CRC Press, Ontario, Canadá.

Hultberg, M., T. Alsberg, S. Khalil, y B. Alsanius. 2010. Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl 55:435-444.

Jensen, G., B. Hansen, J. Eilenberg, y J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5:631-640.

Kwon, S.W., J.S. Kim, ICh. Park, S.H. Yoon, D.H. Park, Ch.K. Lim, y S.J. Go. 2003. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. Int. J. Syst. Evol. Microbiol. 53:21-27.

Ledezma, E., G. Ramírez, y N. Pino-Benítez. 2006. Forest orchids of the Choco region. Lyonia 10(1):17-31.

Logan, N.A., y P. de Vos. 2009. Genus I. Bacillus. En: P. de Vos et al., editores, Bergey’s manual of systematic bacteriology. Springer Science, NY, USA. p. 21-108.

Matsumoto, L.S., A.M. Martines, M.A. Avanzi, U.B. Albino, C.B. Brasil, D.P. Saridakis, L.G.L. Rampazo, W. Zangaro, y G. Andrade, G. 2005. Interactions among functional groups in the cycling of, carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Appl. Soil Ecol. 28(1):57-65.

Misas, G. 2005. Orquídeas de la Serranía del Baudó. Editorial Chocó, Colombia.

Monsalve, A., A. Osorio, y F.H. Moreno. 2012. Efecto de sustratos orgánicos compostados o frescos sobre el desarrollo de plántulas de vainilla. Trabajo de investigación, Universidad Nacional de Colombia, Medellín.

Moreno, F., y M. Díez. 2011. Cultivo de vainilla. Contribuciones para el desarrollo de su cadena productiva en Colombia. Universidad Nacional de Colombia, Medellín, Colombia.

Murphy, J., y J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31-35.

Murthy, G., K. Umesha, G.R. Smitha, y R. Krishnamanohar. 2010. Effect of growth regulators and bio-inoculants on rooting and growth of vanilla stem cuttings. Indian J. Hort. 67:90-93.

Naik, G., B. Saifulla, R. Nagaraja, y M.K. Basavaraja. 2010. Biological control of Fusarium oxysporum f.sp. vanillae, the causal agent of stem rot of Vanilla in vitro. IJSN 1:259-261.

Ocampo, B.M., L.F. Patiño, M.A. Marín, M. Salazar, y P. Gutiérrez. 2012. Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Rev. Fac. Nac.Agr. Medellín 65:6291-6303.

Osorio, N.W. 2011. Effectiveness of phosphate solubilizing microorganisms in increasing plant phosphate uptake and growth in tropical soils. En: D.K. Maheshwari, editor, Bacteria in agrobiology: plant nutrient management (Volume III). Springer-Verlag, Berlin, Alemania. p. 65-80.

Osorio, A. 2012. Efecto de materiales orgánicos, fertilizantes e inóculos microbiales sobre el crecimiento y nutrición de plántulas de vainilla. Tesis de Maestría en Bosques y Conservación Ambiental, Universidad Nacional de Colombia, Medellín, Colombia.

Osorio, N.W., y M. Habte. 2001. Synergistic influence of an arbuscular mycorrhizal fungus and P solubilizing fungus on growth and plant P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res. Manag. 15:263-274.

Palm, M.E., W. Gams, y H. Nirenberg. 1995. Plectosporium, a new genus for Fusarium tabacinum, the anamorph of Plectospharella cucumerina. Mycologia 87:397-406.

Raboy, V. 2003. myo-inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64:1033-1043.

Ramírez, J.G., L. Osorno, N. Osorio, y J. Morales. 2013. Alternativas microbiológicas para mejorar el crecimiento del caupí. Rev. Fac. Nac. Agr. Medellín 66:7035-7044.

Reyes, I., A. Valery, y Z. Valduz. 2007. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. En: E. Velásquez, y C. Rodríguez- Barrueco, editores, Developments in plant and soil sciences (Volumen 102). Springer, Amsterdam, Holanda. p. 69-75.

Robertson, G.P., y P.M. Groffman. 2007. Nitrogen transformations. En: E.A. Paul, editor, Soil microbiology, ecology and Biochemistry. Elsevier, Amsterdam, Holanda. p. 341-364.

Rösch, C., y H. Bothe. 2005. Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl. Environ. Microbiol. 71:2026-2035.

Sadeghian, S. 2010. La materia orgánica: componente esencial en la sostenibilidad de los agroecosistemas cafeteros. Cenicafé, Chinchiná, Colombia.

Shashidhar, K.R., T.K. Narayanaswamy, R.N. Bhaskar, B.R.

Jagadish, M. Mahesh, y K.S. Krishna. 2009. Influence of organic based nutrients on soil health and mulberry (Morus indica L.) production. J. Biol. Sci. 1:94-100.

Silo-Suh, L., B. Lethbridge, S.J. Raffel, H. He, J. Clardy, y J. Handelsman. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:2023-2030.

Singh, H., y M. Reddy. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur. J. Soil Biol. 47(1):30-34.

Soto-Arenas, M.A. 2006. La vainilla: retos y perspectiva de su cultivo. Biodiversitas 66:1-9.

Surendra, G.K., S.K. Mathew, y P.A. Nazeem. 2009. Development of plant growth promoting microorganisms consortia technology for ex vitro establishment of micropropagated vanilla (Vanilla planifolia Andr.) and ginger (Zingiber officinale Rosc.). (Consultado 20 mar. 2011)

Tabatabai, M.A. 1982. Soil enzymes. En: A.L. Page, R.H. Miller, y D.R. Kineey, editores, Methods of soil analysis. Chemical and microbiological properties. ASA-SSSA, Madison, EEUU. p. 903-947.

Tate, K.R., D.J. Ross, B.J. O’Brien, y F.M. Kelliher. 1993. Carbon storage and turnover, and respiratory activity, in the litter and soil of an old-growth southern beech (nothofagus) forest. Soil Biol. Biochem. 25:1601-1612.

Toribio, J., A.E. Escalante, J. Caballero-Mellado, A. González-González, S. Zavala, V. Souza, y G. Soberón-Chávez. 2011. Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Syst. Appl. Microbiol. 34:531-535.

Tsavkelova, E.A., T.A. Cherdyntseva, S.Y. Klimova, A.I. Shestakov, S.G. Botina, y A.I. Netrusov. 2007. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch. Microbiol. 188:655-664.

Uphoff, N., A.S. Ball, E.C.M. Fernandes, H. Herren, O. Husson, Ch. Palm, J. Pretty, N. Sanginga, y J.E. Thies. 2006. Understanding the functioning and management of soil systems. En: N. Uphoff, editor, Biological approaches to sustainable soil systems. Taylor and Francis, Boca Raton, USA. p. 3-14.

Vats, P., y U.C. Banerjee. 2004. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate

phosphohydrolases): an overview. Enzyme Microb. Tech. 35:3-14.

Webster, J., y R. Weber. 2007. Introduction to fungi.

Cambridge University Press, Cambridge, Reino Unido.

Whitelaw, M.A. 2000. Growth Promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69:99-151.

Wilkinson, K.G., K. Sivasithamparam, K.W. Dixon, P.C. Fahy, y J.K. Bradley. 1994. Identification and characterisation of bacteria associated with Western Australian orchids. Soil Biol. Biochem. 26:137-142.

Wood, P.J. 1980. Specify in the interactions of direct dyes with polysaccharides. Carbohyd. Res. 85:271-287.

Zare, R., W. Gams, M. Starink-Willemse, y R.C. Summerbell. 2007. Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae. Nova Hedwigia 85:463-489.

Zuberer, D.A. 1999. Biological dinitrogen fixation: introduction and non-symbiotic. En: D. Sylvia et al., editores, Principles and applications of soil microbiology. Prentice Hall, New Jersey, USA. p. 295-321.



How to Cite

Álvarez-López, C., Osorio-Vega, W., Díez-Gómez, M. C., & Marín-Montoya, M. (2014). Biochemical characterization of rhizosphere microorganisms from vanilla plants with potential as biofertilizers. Agronomía Mesoamericana, 25(2), 225–241.

Most read articles by the same author(s)