Abstract

Energy production from sorghum bioethanol is a way to help decrease climate change and environmental degradation. The objective of this work was to evaluate the agronomic characteristics associated to bioethanol production in experimental genotypes of sweet sorghum. During 2013 and 2014, seventeen sweet genotypes were evaluated in two locations, this locations are situated in northeastern Mexico, under a complete block randomly design with three replications. The three experiments were executed in Estacion Cuauhtemoc, Tamaulipas, in dryland; and two in Marin, Nuevo León, under irrigation. Experimental hybrid Potranca x Keller (p≤0.05) presented the highest values (kg/ha) in: biomass weight (52 125), stem (39 650), panicle (4550), leaf (7700), juice (14 125), and bioethanol (2157 l/ha); it surpassed to the most productive control (Keller) in: 35,7, 32,5, 63,2, 41,6, 32,5, and 36,8%, respectively. It bloomed 6.8 days earlier than variety control. Experimental variety 17-1-1-1 had a minor foliar incidence of diseases in comparison to Keller. In addition, it presented agronomic characteristics similar to control in: biomass weight (44 375 kg/ha), stem (35 438 kg/ha), panicle (2488 kg/ha), leaf (6400 kg/ha), juice (11 750 kg/ha), plant dry weight (19 113 kg/ha), stem dry weight (14 888 kg/ha), bioethanol production (1929 l/ha), °Brix (15,2), days to flowering (80,8) and plant height (224 cm).

Keywords: Sorghum bicolor, sorghum breeding, renewable energy, biomass production.