Endophytic bacteria of Capsicum frutescens antagonistic to Fusarium spp.

Authors

  • Martha Lucia Velasco-Belalcázar Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias.
  • Carlos Alberto Hernández-Medina Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. https://orcid.org/0000-0002-4002-4109
  • Eyder Daniel Gómez-López Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias.
  • Celina Torres-González Universidad del Valle, Facultad de Ciencias.
  • Paola Andrea Caro-Hernández Universidad Libre. https://orcid.org/0000-0003-4362-0405

DOI:

https://doi.org/10.15517/am.v30i2.31760

Keywords:

Pepper, antagonism, biological control, plant pathogens

Abstract

 Introduction. In the last decades, there has been an increased on the interest of Tabasco Chilli pepper cultivation in Colombia; however, production limitation has been observed due to phytosanitary problems. Species of the genus Fusarium cause root and stem rots with large losses for farmers; whereby, it is important to find alternatives to vascular wilt management caused by Fusarium spp. Objective. The objective of this research was to isolate and characterize endophytic foliar bacteria with in vitro antagonistic potential against Fusarium spp. in Tabasco Chili pepper (Capsicum frutescens) plants. Materials and methods. In the period between February 2014 and February 2016, the in vitro antagonistic capacity of 68 bacterial endophytes of leaf tissue C. frutescens, from two municipalities of Valle del Cauca, Colombia, was evaluated. The isolated bacteria were confronted with six pathogenic isolates of Fusarium spp. by dual growth method. Results. Fifty of the bacterial isolates showed percentages of inhibition against at least one Fusarium isolate, and of these sixteen had percentages of inhibition above 40 %. The morphology, biochemical profile and molecular characterization allowed to determine that the isolates identified as Bacillus subtillis and Pseudomonas aeruginosa showed inhibition averages between 62 and 89%, high averages compared to those previously reported in other studies. In addition, stand out as new findings of bacteria associated with endophytic plant tissue of C. frutescens, in Valle del Cauca, Colombia, the Enterobacter cloacae, Microbacterium arborescens, and Stenotrophomonas maltophilia species. Conclusion. These results constitute a potential source for pathogen management and productivity improvement in tabasco chili pepper in Colombia. 

Downloads

Download data is not yet available.

References

Acosta, T., A. Avellaneda, J. Cuervo, y L. Sánchez. 2007. Evaluación de microbiota de tomillo (Thymus vulgaris), como aporte al manejo agroecológico de aromáticas en invernaderos de la Universidad Nacional. En: Universidad Nacional de Colombia, editor, Perspectivas del agronegocio de hierbas aromáticas culinarias y medicinales. Universidad Nacional de Colombia, Bogotá, COL. p. 135-138.

Agrios, G.N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, USA.

Amaresan, N., V. Jayakumar, and N. Thajuddin. 2014. Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Ind. J. Biotechnol. 13:247-255.

Andrés-Ares, J.L., A. Rivera-Martínez, F. Pomar-Barbeito, and J. Fernández-Paz. 2005. Telluric pathogens isolated from blighted pepper (Capsicum annuum L.) plants in northwestern Spain. J. Agric. Res. 3:326-330. doi:10.5424/sjar/200533-161

Babana, A.H., A. Dicko, K. Maïga, and D. Traoré. 2013. Characterization of rock phosphate-solubilizing microorganisms isolated from wheat (Triticum aestivum L.) rhizosphere in Mali. J. Microbiol. Microbial Res. 1(1):1-6.

Banat, I.M., R.S. Makkar, and S.S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53:495-508. doi:10.1007/s002530051

Barquero, M., A. Terrón, E. Velázquez, and F. González-Andrés. 2016. Biocontrol of Fusarium oxysporum f.sp. phaseoli and Phytophthora capsici with autochthonous endophytes in common bean and pepper in Castilla y León (Spain). In: F. González-Andrés, and E. James, editors, Biological nitrogen fixation and beneficial plant-microbe interaction. Springer, Cham, SUI. p.221-235. doi: 10.1007/978-3-319-32528-6_19

Benítez, S., J. Bentley, P. Bustamante, L.C. Sánchez, y L. Corrales. 2007. Aislamiento de los microorganismos cultivables de la rizósfera de Ornithogalum umbellatum y evaluación del posible efecto biocontrolador en dos patógenos del suelo. Nova 5:147-153.

Bhattacharyya, P.N., and D.K. Jha. 2012. Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-1350. doi:10.1007/s11274-011-0979-9

Brader, G., S. Compant, B. Mitter, F. Trognitz, and A. Sessitsch. 2014. Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 27:30-37. doi:10.1016/j.copbio.2013.09.012

Clavijo-Castro, S. 2014. Búsqueda de resistencia a la pudrición causada por Fusarium spp. en Capsicum. Tesis MSc.,

Universidad Nacional de Colombia, Palmira, COL.

Cordero, P., A. Príncipe, E. Jofré, G. Mori, and S. Fischer. 2014. Inhibition of the phytopathogenic fungus Fusarium proliferatum by volatile compounds produced by Pseudomonas. Arch. Microbiol. 196:803-809. doi:10.1007/s00203-014-1019-6

Dertz, E.A., A. Stintzi, and K.N. Raymond. 2006. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. J. Biol. Inorg. Chem. 11:1087-1097. doi:10.1007/s00775-006-0151-4

Edward, E.J., W.S. King, S.L.C. Teck, M. Jiwan, Z.F.A. Aziz, F.R. Kundat, O.H. Ahmed, and N.M.A. Majid. 2013. Antagonistic activities of endophytic bacteria against Fusarium wilt of black pepper (Piper nigrum). Int. J. Agric. Biol. 15:291-296.

Elhalag, K.M., N.A. Messiha, H.M. Emara, and S.A. Abdallad. 2015. Evaluation of antibacterial activity of Stenotrophomonas maltophilia against Ralstonia solanacearum under different application conditions. J. Appl. Microbiol. 120:1629-1645. doi:10.1111/jam.13097

Fernández-Larrea, O. 2001. Microorganismos antagonistas para el control fitosanitario. Manejo Integrado Plagas 62:96-100.

Franco-Correa, M. 2008. Evaluación de caracteres PGPR en actinomicetos e interacciones de estas rizobacterias con hongos formadores de micorrizas. Tesis Dr., Universidad de Granada, ESP.

Glick, B.R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401.

doi:10.6064/2012/963401.

Glick, B.R. 2015. Beneficial plant-bacterial interactions. Springer International Publishing, SUI.

González, I., Y. Arias, y B. Peteira. 2012. Aspectos generales de la interacción Fusarium oxysporum f. sp. lycopersici-tomate. Rev. Protección Veg. 27:1-7.

Guigón-López, C., y P.A. González-González. 2001. Estudio regional de las enfermedades del chile (Capsicum annuum L.) y su comportamiento temporal en el sur de Chihuahua, México. Rev. Mex. Fitopatol. 19:49-56.

Ito, T. 1993. Enzymatic determination of itoic acid, a Bacillus subtilis siderophore, and 2,3-dihydroxybenzoic acid. Appl. Environ. Microbiol. 59:2343-2345.

Islek, C., and B. Turkyilmaz-Unal. 2015. Copper toxicity in Capsicum annuum: Superoxide dismutase and catalase activities, phenolic and protein amounts of in-vitro-grown plants. Polish J. Environ. Stud. 24(6):47-51. doi:10.15244/pjoes/59035

Jorquera, M.A., B. Shaharoona, S.M. Nadeem, M. De-la-Luz-Mora, and D.E. Crowley. 2012. Plant growth-promoting

rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microbial Ecol. 64:1008-1017. doi:10.1007/s00248-012-0071-5

Kloepper, J.W., J. Leong, M. Teintze, and M.N. Schroth. 1980. Enhanced plant growth by siderophores produced by plant growth–promoting rhizobacteria. Nature 286:885-886. doi:10.1038/286885a0

Kloepper, J.W., R. Rodríguez-Kábana, A.W. Zehnder, J.F. Murphy, E. Sikora, and C. Fernández. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas. Plant Pathol. 28:21-26. doi:10.1071/AP99003

Leslie, J.F., and B.A. Summerell. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, USA.

Liu, W.Y., K.M. Chung, C.F. Wong, J.W. Jiang, R.K. Hui, and F.C. Leung. 2012. Complete genome sequence of the endophytic Enterobacter cloacae subsp. cloacae strain ENHKU01. J. Bacteriol. 194:5965-5965. doi:10.1128/JB.01394-12

Loper, J.E., and M.N. Schroth. 1986. Importance of siderophores in microbial interactions in the rizosphere. In: T.R. Swinburne, editor, Iron, siderophores and plant diseases. Springer, Boston, MA, USA. p. 85-98

Lugtenberg, B., and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556. doi:10.1146/annurev.micro.62.081307.162918

Mahmoud, A.F. 2016. Genetic variation and biological control of Fusarium graminearum isolated from wheat in Assiut-Egypt. Plant Pathol. J. 32:145-156. doi:10.5423/PPJ.OA.09.2015.0201

Malik, D.K., and S.S. Sindhu. 2011. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with

Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants 17:25-32. doi:10.1007/s12298-010-0041-7

Merino, L.A., y G. Giusiano. 2011. Manual de métodos moleculares para estudios microbiológicos. Asociación Argentina de Microbiología, Buenos Aires, ARG.

Molina-Romero, D., M.R. Bustillos-Cristales, O. Rodríguez-Andrade, Y.E. Morales-García, Y. Santiago-Saenz, M. Castañeda-Lucio, y J. Muñoz-Rojas. 2015. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas 17(2):24-34.

Morales-Rondón, V., y M. Rodríguez-González. 2006. Hongos endófitos en plantaciones de mango `Haden’ de la planicie de Maracaibo, Venezuela. Rev. Fac. Agron. 23:273-284.

Morango-González, A.M., D. Espinoza-Victoria, y F.C. Gómez-Merino. 2015. Eficiencia de las bacterias promotoras del crecimiento vegetal (BPCV) en caña de azúcar. Rev. Terra Latinoam. 33:321-330.

Muhammad, U., F. Mudassar, F. Kanza, S. Muhammad, A. Qurban, R. Bushra, Q. Abdul A. Idrees, and H. Tayyab. 2016. Phytophthora capsici on chili pepper (Capsicum annuum L.) and its management through genetic and bio-control: a review. Zemdirbyste-Agriculture 103:419-430. doi:10.13080/z-a.2016.103.054

Narayan C., H. Seung, X. Jian, and H. Seung. 2013. Assemblages of endophytic bacteria in chili pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. POJ 6:441-448

Nongkhlaw, W., F. Mary, and S.R. Joshi. 2014. Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Rev. Biol. Trop. 62:1295-1308. doi:10.15517/rbtv62i4.12138

Ochoa, L., y M. Lundy. 2002. El caso de la producción de pasta de ají para exportación del Valle del Cauca, Colombia. FAO, CHI.

Oliveira, C.A., V.M.C. Alves, I.E. Marriel, E.A. Gomes, M.R. Scotti, N.P. Carneiro, R. Guimarães, R. Shaffert, and N.M.H.

Sá. 2009. Phosphate soconlubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol. Biochem. 41:1782-1787. doi:10.1016/j.soilbio.2008.01.012

Peña, H.B., e I. Reyes. 2007. Aislamiento y evaluación de bacterias fijadoras de nitrógeno y disolventes de fosfatos en la promoción del crecimiento de la lechuga (Lactuca sativa L.). Interciencia 32:560-565.

Pérez, A., C. Pérez, y L. Chamorro. 2013. Diversidad de bacterias endófitas asociadas a cultivo de arroz en el departamento de Córdoba-Colombia: estudio preliminar. Rev. Colomb. Cienc. Anim. 5:83-92. doi:10.24188/recia.v5.n1.2013.473

Pérez-Hernández, A., Y. Serrano-Alonso, M.I. Aguilar-Pérez, R. Gómez-Uroz, and J. Gómez-Vázquez. 2014. Damping-off and root rot of pepper caused by Fusarium oxysporum in Almeria Province, Spain. Plant Dis. 98:1159. doi:10.1094/PDIS-02-14-0212-PDN

Puri, A., K.P. Padda, and C.P. Chanway. 2018. Nitrogen-fixation by endophytic bacteria in agricultural crops: recent advances. In: S.F. Amanullah, editor, Nitrogen in agriculture. IntechOpen, London, GBR. p. 73-94. doi:10.5772/intechopen.71988

Rajkumara, M., N. Aea, and H. Freitas. 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153-160. doi:10.1016/j.chemosphere.2009.06.047

Ramos, M., y C. Valero. 2008. Aislamiento de rizobacterias promotores de germinación de uchuva (Physalis peruviana L.) y antagónica frente a Fusarium oxyporum. Pontificia Universidad Javeriana, Bogotá, COL.

Reinhold-Huker, B., and T. Hurek. 1998. Interactions of grameneous plant with Azoarcus spp., and other diazotrophic, identification, localization and perspective to study their function. Crit. Rev. Plant Sci. 17:29-54. doi:10.1080/07352689891304186

Santoyo, G., G. Moreno-Hagelsiebb, M.C. Orozco-Mosquedac, and B.R. Glickc. 2015. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183:92-99. doi:10.1016/j.micres.2015.11.008

Sarabia, M., R. Madrigal, M. Martínez, e Y. Carreón. 2010. Plantas, hongos micorrízicos y bacterias: su compleja red de interacciones. Biológicas 12(1):65-71.

Smith, S.A., D.C. Tank, L.A. Boulanger, C.A. Bascom-Slack, K. Eisenman, D. Kingery, B. Babbs, K. Fenn, J.S. Greene, B.D. Hann, J. Keehner, E.G. Kelley-Swift, V. Kembaiyan, S.J. Lee, P. Li, D.Y. Light, E.H. Lin, C. Ma, E. Moore, M.A. Schorn, D. Vekhter, P.V. Nunez, G.A. Strobel, M.J. Donoghue, and S.A. Strobel. 2008. Bioactive endophytes warrant intensified exploration and conservation. PLoS ONE 3(8):e3052. doi:10.1371/journal.pone.0003052

Sturz, A.V., and J. Nowak. 2000. An endophytic community of rhizobacteria and the strategies requires to create yield enhancing associations with crops. Appl. Soil Ecol. 15:183-190. doi:10.1016/S0929-1393(00)00094-9

Sarwar, A., G. Brader, E. Corretto, G. Aleti, M. Abaidullah, A. Sessitsch, and F.Y. Hafeez. 2018. Qualitative analysis of

biosurfactants from Bacillus species exhibiting antifungal activity. PLoS ONE 13(6):e0198107. doi:10.1371/journal.pone.0198107

Tejera-Hernández, B., M. Rojas-Badía, y M. Heydrich-Pérez. 2011. Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Rev. CENIC Cienc. Biol. 42:131-138.

Toyoda, H., and R. Utsumi. 1991. US4988586A: Method for the prevention of Fusarium diseases and microorganisms used for the same. Daikin Industries Ltd., USA.

Turlier, M.F., A. Epavier, and C. Alabouvette. 1994. Early dynamic interactions between Fusarium oxysporum f.sp. lini and the roots of Linus usitatissimum as revealed by transgenic GUS-marked hyphae. Can. J. Bot. 72:1605-1612. doi:10.1139/b94-198

Uzair, B., R. Kausar, S.A. Bano, S. Fatima, M. Badshah, U. Habiba, and F. Fasim. 2018. Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. BioMed Res. Int. 2018:6147380. doi:10.1155/2018/6147380

Velasco-Belalcazar, M. 2016. Caracterización de bacterias antagónicas a Fusarium sp., causante de la marchitez vascular de Capsicum frutescens en Guacarí y Bolivar, Valle del Cauca. Tesis MSc., Universidad Nacional de Colombia, Palmira, COL.

Venner, C., y M.J. Martín. 2009. Aislamiento y selección de rizobacterias promotoras de crecimiento vegetal en cultivos de uchuva (Physalis peruviana L.) con capacidad antagónica frente a Fusarium sp. Trabajo de grado, Pontificia Universidad Javeriana, Bogotá, COL.

Walia, A., S. Guleria, A. Chauhan, and P. Mehta. 2017. Endophytic bacteria: Role in phosphate solubilization. In: D.

Maheshwari, and K. Annapurna, editors, Endophytes: Crop productivity and protection. Vol. 16. Sustainable development and biodiversity. Springer, Cham, SUI. p. 61-93. doi:10.1007/978-3-319-66544-3_4

Weisburg, W.G., S.M. Barns, D.A. Pelletier, and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. doi:10.1128/jb.173.2.697-703.1991

Whipps, J.M. 2001. Microbial interactions and biocontrol in the rhizophere. J. Exp. Bot. 52:487-511. doi:10.1093/jexbot/52.suppl_1.487

Zhou, L., H.X. Jiang, S. Sun, D.D. Yang, K.M. Jin, W. Zhang, and Y.W. He. 2016. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. World J. Microbiol. Biotechnol. 32(3):50. doi:10.1007/s11274-015-1987-y

Published

2019-05-01

How to Cite

Velasco-Belalcázar, M. L., Hernández-Medina, C. A., Gómez-López, E. D., Torres-González, C., & Caro-Hernández, P. A. (2019). Endophytic bacteria of Capsicum frutescens antagonistic to Fusarium spp. Agronomía Mesoamericana, 30(2), 367–380. https://doi.org/10.15517/am.v30i2.31760

Most read articles by the same author(s)