Genetic, chemical and agronomical characterization of husk tomato advanced lines

Authors

  • Mario Martin González-Chavira Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimenta Bajío.
  • Salvador Horacio Guzmán-Maldonado Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimenta Bajío.
  • José Luis Pons-Hernández Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimenta Bajío.
  • Salvador Villalobos-Reyes Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimenta Bajío.
  • Enrique Gónzalez-Pérez Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimenta Bajío. http://orcid.org/0000-0002-6648-1113

DOI:

https://doi.org/10.15517/am.v30i1.34402

Keywords:

functional components, genetic diversity, molecular markers, Physalis ixocarpa, production potential

Abstract

Introduction. Knowledge about the genetic, chemical and morphological diversity that exists between individuals and populations is very useful in breeding programs, because it facilitates the organization of the material and the appropriate selection of superior genotypes for the development of an improved population. Objective. The aim of this research was to make a genetic, chemical and agronomic characterization in twenty advanced husk tomato lines (Physalis ixocarpa Brot.), belonging to the vegetable breeding program of the Campo Experimental Bajío (CE-Bajío), of the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), México. Materials and methods. During the spring-summer and autumn-winter 2017, the genetic variability was quantified with molecular markers of DNA, type AFLP (Amplified Fragment Length Polymorphisms), likewise, the phenolic and tomatidine compounds in the fruit were determined, and agronomic traits like germination percentage, number of fruits per plant, weight of the fruit, equatorial and polar diameter per fruit, and fruit yield were determined. A general average of similarity between the genotypes of 0.86 was obtained. Results. A general similitude mean between genotypes of 0.86 was obteined. According to the genetic relationships, a geographic pattern was identified and genotypes 4 and 70 were detected as possible progenitors of improved hybrids. Chemical diversity indicated that the fruits flavonoids content in L-86 was the highest (51.1mg EAG/100g), phenols (396.8 mg EAG/100 g) and anthocyanin’s (7.22 mg EAG/100g) for L-182 and tannins (188.4 mg EAG/100 g) for L-97, while tomatidine (2.23-3.81 mg EAG/100 g) was higher in green fruits than purple fruits. The agronomic results indicate that the lines fruit yield ranged from 11.4 to 47.6 t/ha, the 20% of the lines has a superior yield than the national mean yield (40 t/ha), The L-37 was noticeable, since it has the highest fruit yield with 47.6 t/ha, and has the highest number of fruits number per plant, equatorial and polar diameters, and germination rate (93.3%). Conclusion. Based on the results the lines 37, 25, 27 and 167 are positioned as lines with potential for commercial use and as parental lines.

Downloads

Download data is not yet available.

Author Biography

Enrique Gónzalez-Pérez, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimenta Bajío.

Programa de hortalizas

References

Avise, J.C. 2004. Molecular markers. Natural history and evolution. Chapman & Hall, NY, USA.

Andersson, C. 1999. Glycoalkaloids in tomatoes, eggplants, pepper and two Solanum species growing wild in the Nordic countries. Nordic Council of Ministers, Copenhagen, DEN.

Bergier, K., E. Kuzniak, and M. Sklodowska. 2012. Antioxidant potential of Agrobacterium-transformed and non-transformed Physalis ixocarpa plants grown in vitro and ex vitro. Posteyy Hig. Med. Dosw. 66:976-982. doi:10.5604/17322693.1023086

Bock, M.A., J. Sanchez-Pilcher, L.J. McKee, and M. Ortiz. 1995. Selected nutritional and quality analyses of tomatillos (Physalis ixocarpa). Plant Foods Hum. Nutr.48:127-133. doi:10.1007/BF01088308

Canul-Ku, J., E. González-Pérez, S. Villalobos-Reyes, E. Javier Barrios-Gómez, y S.E. Rangel-Estrada. 2017. Valoración de germoplasma de tomate de cáscara cultivado en el estado de Morelos, México. Interciencia 42:250-255.

Camposeco, M.N., T.V. Robledo, A.L.A. Valdez, G.F. Ramírez, V.R. Mendoza, y M.A. Benavides. 2015. Estimación de la aptitud combinatoria en poblaciones de tomate de cáscara. Rev. Mex. Cien. Agric. 6:437-451. doi:10.29312/remexca.v6i3.630

Cubero, J.I. 2013. Introducción a la mejora genética vegetal. Mundi-Prensa, Madrid, ESP.

Deshpande, S.S., and M. Cheryan. 1985. Evaluation of vanillin assay for tannin analysis of dry beans. J. Food Sci. 50:905-910. doi:10.1111/j.1365-2621.1985.tb12977.x

Dewanto, X., K. Wu, K. Adom, and R.H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50:3010-3014. doi:10.1021/jf0115589

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620. doi:10.1111/j.1365-294X.2005.02553.x

Elizalde-González, M.P., and S.G. Hernández-Ogarcía. 2007. Effect of cooking process on the contents of two bioactive carotenoids in Solanum lycopersicum tomatoes and Physalis ixocarpa and Physalis philadelphica tomatillos. Molecules 12:1829-1835. doi:10.3390/12081829

Friedman, M. 2013. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food. Chem. 61:9534-9550. doi:10.1021/jf402654e

Fujiwara, Y., N. Kiyota, K. Tsurushima, M. Yoshitomi, H. Horlad, T. Ikeda, T. Nohara, M. Takeya, and R. Nagai. 2012. Tomatidine, a tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in apoE-deficient mice by inhibiting acyl-CoA: cholesterol acyl-transferase (ACAT). J. Agric. Food Chem. 60:2472-2479. doi:10.1021/jf204197r

González-Mendoza, D., D. Ascencio-Martinez, A. Hau-Poox, V. Mendez-Trujillo, O. Grimaldo-Juarez, J.F. Santiaguillo-Hernández, L. Cervantes-Díaz, and S.M. Aviles-Marin. 2011. Phenolic compounds and physiochemical analysis of Physalis ixocarpa genotypes. Sci. Res. Essays 6:3808-3814. doi:10.5897/SRE11.570

Gϋemes, G.M.J., y K. Inoue. 2001. Producción de semilla de alta calidad de tomate de cascara, variedad “Rendidora”. COFUPRO, MEX. https://www.cofupro.org.mx/cofupro/images/contenidoweb/indice/unidadmorelos/libros/hortalizas/hortalizas24.pdf (consultado 28 set. 2018).

Hillis, D.M., and J.J. Wiens. 2000. Molecules versus morphology in systematics. In: J.J. Wiens, editor, Phylogenetic analysis of morphological data. Smithsonian Institution Press, WA, USA. p. 1-19.

Hudson, W.D. Jr. 1986. Relationships of domesticated and wild Physalis philadelphica. In: W.G. D’Arcy, editor, Solanaceae: biology and systematics. Columbia University Press, NY, USA. p. 416-432.

ISTA (International Seed Testing Association). 1995. Handbook of vigor test methods. 3rd ed. Zurich, SUI.

Labate, J.A., L.D. Robertson, and A.M. Baldo. 2009. Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.). Heredity 103:257-267. doi:10.1038/hdy.2009.58

Laurila, J., I. Laakso, T. Väänänen, P. Kuronen, R. Huopalahti, and E. Pehu. 1999. Determination of solanidine- and tomatidine-type glycoalkaloid aglycons by gas chromatography/mass spectrometry. J. Agric. Food Chem. 47:2738-2742. doi:10.1021/jf981009b

Lee, J., R.W. Durst, and R.E. Wrolstad. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88:1269-1278.

López-López, R., R. Arteaga Ramírez, I. Sánchez-Cohen, W. Ojeda Bustamante, y V. González-Lauck. 2008. Evapotranspiration and crop water stress index in Mexican husk tomatoes (Physalis ixocarpa Brot). In: G. Gerosa, editor, Evapotranspiration - from measurements to agricultural and environmental applications. InTech, Rijeka, CRO. p. 187-210. doi:10.5772/17060

Masuelli, R.W., y C.F. Marfil. 2011. Variabilidad epigenética en plantas y evolución. J. Basic Appl. Genet. 22(1):1-8.

Mulato-Brito, J., and A. Peña-Lomelí. 2007. Germplasm evaluation of tomatillo (Physalis ixocarpa Brot.) cropped under Ontario, Canada and Chapingo, Mexico environmental conditions. Veg. Crop Res. Bull. 66:117-127. doi:10.2478/v10032-007-0014-8.

Núñez-Colín, C.A., y E. Valadez-Moctezuma. 2010. Análisis estadístico de huellas genómicas. Un uso práctico de los paquetes computacionales más populares. INIFAP, Celaya, Guanajuato, MEX.

Peña-Lomelí, A., H. Guerrero-Ramos, J.E. Rodríguez-Pérez, J. Sahagún-Castellanos, y N. Magaña-Lira. 2013. Selección temprana en familias de medios hermanos maternos de tomate de cáscara de la raza Puebla. Rev. Chapingo Ser. Hort. 19:5-13. doi:10.5154/r.rchsh.2012.01.18

Peña-Lomelí, A., J.D. Molina-Galán, T. Cervantes-Santana, F. Márquez-Sánchez, J. Sahagún-Castellanos, y J. Ortiz-Cereceres. 1998. Heterosis intervarietal en tomate de cáscara (Physalis ixocarpa Brot.). Rev. Chapingo Ser. Hort. 4:31-37. doi:10.5154/r.rchsh.1997.12.093

Peña-Lomelí, A., J.J. Ponce-Valerio, F. Sánchez-del-Castillo, y N. Magaña-Lira. 2014. Desempeño agronómico de variedades de tomate de cáscara en invernadero y campo abierto. Rev. Fitotec. Mex. 37:381-391.

Porebski, S.L., G. Bailey, and R. Baum. 1997. Modification of CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8-15. doi:10.1007/BF02772108.

Proteggente, A.R., A.S. Pannala, G. Paganga, L. Van-Buren, E. Wagner, S. Wiseman, F. Van-de-Put, C. Dacombe, and C.A. Rice-Evans. 2002. The antioxidant activity of regular consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Rad. Res. 36:217-233. doi:10.1080/10715760290006484

Ramírez-Godina, F., V. Robledo-Torres, R. Foroughbakhch-Pournabav, A. Benavides-Mendoza, J.L. Hernández-Piñero, M.H. Reyes-Valdes, and M.A. Alvarado-Vázquez. 2013. Yield and fruit quality evaluation in husk tomato autotetraploids (Physalis ixocarpa) and diploids. Aust. J. Crop Sci. 7:933-940.

Rick, C.M., J.W. Uhlig, and A.D. Jones. 1994. High R-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects. Proc. Natl. Acad. Sci. 91:12877-12881. doi:10.1073/pnas.91.26.12877

Robledo-Torres, V., F. Ramírez-Godina, R. Foroughbakhck-Pournovab, A. Benavides-Mendoza, G. Hernández-Guzmán, and M.H. Reyes-Valdés. 2011. Development of tomatillo (Physalis ixocarpa Brot.) autotetraploids and their chromosome and phenotypic characterization. Breed. Sci. 61:288-293. doi:10.1270/jsbbs.61.288

Rohlf, F.J. 2000. NTSYS-pc, numerical taxonomy and multivariate analysis system. Version 2.11. Exeter, Setauket, NY, USA.

Santiaguillo-Hernández, J.F., y A. Peña-Lomelí. 1997. Tomate de cáscara: Elija su variedad. Rev. Agricultura 48:12-14.

Santiaguillo-Hernández, F.J., T. Cervantes, y A. Peña-Lomelí. 2004. Selección para rendimiento y calidad de fruto de cruzas planta × planta entre variedades de tomate de cáscara. Rev. Fitotec. Mex. 27:85-91.

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca). 2017. Anuario estadístico de la producción agrícola de México 2017. https://nube.siap.gob.mx/cierreagricola/ (consultado 8 may. 2018).

SAS Institute. 2009. SAS/SAT User’s guide. Version 9. SAS Institute Inc., Cary, NC, USA.

Sedghi, M., A. Golian, P. Soleimani-Roodi, A. Ahmadi, and M. Aami-Azghadi. 2012. Relationship between color and tannin content in sorghum grain: application of image analysis and artificial neural network. Rev. Bras. Cienc. Avic. 14(1):57-62. doi:10.1590/S1516-635X2012000100010

Singh, D.B., N. Ahmed, S. Lal, A. Mirza, O.C. Sharma, and A.A. Pal. 2014. Variation in growth, production and quality attributes of Physalis species under temperate ecosystem. Fruits 69:31-40. doi:10.1051/fruits/2013099

Singleton, V.L., R. Orthofer, and R. M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152-178. doi:10.1016/S0076-6879(99)99017-1

Valdivia-Maresa, L.E., F.A. Rodríguez-Zaragoza, J. Sánchez-González, and O. Vargas-Ponce. 2016. Phenology, agronomic and nutritional potential of three wild husk tomato species (Physalis, Solanaceae) from Mexico. Sci. Hort. 200:83-94. doi:10.1016/j.scienta.2016.01.005

Vos, P., R. Hogers, M. Bleeker, M. Reigans, T. Van-de-Lee, M. Hornes, A. Frijteis, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407-4414. doi:10.1093/nar/23.21.4407

Wei, J., X. Hu, J. Yang, and W. Yang. 2012. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS ONE. 7(11):e0050164. doi:10.1371/journal.pone.0050164

Wu, X., G.R. Beecher, S.E. Gebhardt, J.M. Holden, D.B. Haytowitz, and R.L. Prior. 2006. Concentrations of Anthocyanins in Common Foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 54:4069-4075. doi:10.1021/jf060300l

Zamora-Tavares, P., O. Vargas-Ponce, J. Sánchez-Martínez, and D. Cabrera-Toledo. 2015. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. Genet. Resour. Crop Evol. 62:141-153. doi:10.1007/s10722-014-0163-9

Published

2019-01-01

How to Cite

González-Chavira, M. M., Guzmán-Maldonado, S. H., Pons-Hernández, J. L., Villalobos-Reyes, S., & Gónzalez-Pérez, E. (2019). Genetic, chemical and agronomical characterization of husk tomato advanced lines. Agronomía Mesoamericana, 30(1), 101–114. https://doi.org/10.15517/am.v30i1.34402

Most read articles by the same author(s)