SPAD index, nitrates, and sorghum yield in response to nitrogen supply
DOI:
https://doi.org/10.15517/am.v32i1.39712Keywords:
Sorghum bicolor, cellular extract, quick test, diagnostic, plant nutritionAbstract
Introduction. Nitrogen (N) is the macronutrient that most affects crop yield, however, the utilization by crops is associated with a low recovery efficiency; for this reason, it is necessary to analyze its absorption into the plant tissue during the cycle to obtain the desired benefit. Objective. To know the effect of nitrogen fertilization on growth, nitrate concentration at the base of the stem (NBT), SPAD index (chlorophyll), and yield of sorghum (Sorghum bicolor L. Moench) grain. Materials and methods. The study was conducted at the Instituto de Ciencias Agrícolas of the Universidad Autónoma de Baja California, Mexico, during the summer 2012, and spring 2013. Increasing doses of nitrogen (N) (0, 64, 128, 192, 256, and 320 kg ha-1) were evaluated using a randomized experimental design. On Experiment 1 (Summer 2012), six nitrogen rates were evaluated in a soil under conservation tillage (LC). On Experiment 2 (Spring 2013) the same doses of nitrogen were evaluated and a treatment of 128 kg ha-1 was also included using the minimum tillage system (LM). Results. On Experiment 1, a greater amount of grain dry weight (PSg), complete plant (PSt), harvest index (IC), and grain yield was obtained than in Experiment 2. Major PSg, PSt, IC, foliar area (AF), and yield grain was obtained with the dose of 192 kg de N ha-1. The SPAD index, and the nitrate concentration on NBT were correlated with yield. Values of R2 on the SPAD index were higher than those found on NBT. Conclusions. The NBT and SPAD index were significantly associated with yield. The best season for sorghum grain production was summer with 192 kg N ha-1.
Downloads
References
Akwasi, A. A., Richard, B. F., Charles, S. W., & Stephen, C. M. (2016). Grain sorghum leaf reflectance and nitrogen status. African Journal of Agricultural Research, 11(10), 825-836. https://doi.org/10.5897/AJAR2015.10495
Alam, M. M., Hammer, G. L., Van-Oosterom, E. J., Cruickshank, A. W., Hunt, C. H., & Jordan, D. R. (2014). A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytologist, 203(1), 155–167. https://doi.org/10.1111/nph.12767
Aziz, I., Mahmood, T., & Islam, K. R. (2013). Effect of long-term no-till and conventional tillage practices on soil quality. Soil Tillage Research, 131, 28–35. https://doi.org/10.1016/j.still.2013.03.002
Forrestal, P. J., Kratochvil, R. J., & Meisinger, J. J. (2012). Late-season corn measurements to assess soil residual nitrate and nitrogen management. Agronomy Journal, 104(1), 148–157. https://doi.org/10.2134/agronj2011.0172
Gerik, T., Bean, B., & Vanderlip, R. (1993). Sorghum growth and development. Texas Cooperative Extension. The Texas A&M University System. http://amarillo.tamu.edu/files/2010/11/sorghum_growth_development.pdf
Hammer, G. L., Carberry, P. S. & Muchow, R. C. (1993). Modelling genotypic and environmental control of leaf area dynamic in grain sorghum. I. Whole plant level. Field Crops Research, 33(3), 293–310. https://doi.org/10.1016/0378-4290(93)90087-4
Hammer, G. L., & Broad, I. J. (2003). Genotype and environment effects on dynamics of harvest index during grain filling in sorghum. Agronomy Journal, 95(1), 199–206. https://doi.org/10.2134/agronj2003.1990
Heckman, J. R., Samulis, R., & Nitzsche, P. (2002). Sweet corn crop nitrogen status evaluation by stalk testing. HortScience, 37(5), 783–786. https://doi.org/10.21273/HORTSCI.37.5.783
Loza, V. E. (2015). Sorgo grano. En Secretaria de Agricultura y Recursos Hidráulicos (Ed.), Agenda Técnica Agrícola Baja California (2da ed., 97–101). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. http://acervo.siap.gob.mx/cgi-bin/koha/opac-detail.pl?biblionumber=6155
Modernización Suatentable de la Agricultura Tradicional. (2014). Modernización sustentable de la agricultura tradicional. http://masagro.mx/es/que-es-masagro/descripcion-general
Mahama, G. Y., Prasad, P. V. V., Mengel, D. B., & Tesso, T. T. (2014). Influence of nitrogen on growth and yield of grain sorghum hybrids and inbred lines. Agronomy Journal, 106(5), 1623–1630. https://doi.org/10.2134/agronj14.0092
Montes, G. N., Williams, A. H., Arco, C. G., Vargas, V. E., Pecina, Q. V., & Espinosa, R. M. (2014). RB-Norteño, sorgo de grano para áreas con sequía. Revista Mexicana de Ciancias Agrícolas, 5(7), 1337–1342.
Parihar, C. M., Jat, S. L., Singh, A. K., Kumar, B., Rathore, N. S., Jat, M. S., Saharawat, Y. S., & Kuri, B. R. (2018). Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India. Energy, 142, 289–302. https://doi.org/10.1016/j.energy.2017.10.015
Prasad, P. V. V., Pisipati, S. R., Mutava, R. N., & Tuinstra, M. R. (2008). Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science, 48(5), 1911–1917. https://doi.org/10.2135/cropsci2008.01.0036
Razmi, Z., Hamidi, R., & Pirasteh-Anoshehg, H. (2013). Seed germination and seedling growth of three sorghum (Sorghum bicolor L.) genotypes as affected by low temperatures. International Journal of Farming and Allied Sciences, 2(20), 851-856.
Rekha, R. C., Reema, C., Alka, S., & Singh, P. K. (2012). Salt tolerance of Sorghum bicolor cultivars during germination and seedling growth. Research Journal of Recent Sciences, 1(3), 1–10.
Ruiz-Corral, J. A., Díaz-Padilla, G., Guzmán-Ruiz, S. D., Medina-García, G., & Silva-Serna. M. M. (2006). Estadísticas Climatológicas Básicas del Estado de Baja California (Período 1961-2003). Instituto Nacional de Investigaciones, Forestales, Agrícolas y Pecuarias. http://www.simarbc.gob.mx/descargas/estadclimatologica-inifap.pdf
Santillano-Cázares, J., Roque-Díaz, L. G., Núñez-Ramírez, F., Grijalva-Contreras, R. L., Robles-Contreras, F., Macías-Duarte, R., Escobosa-García, I., & Cárdenas-Salazar, V. (2019). La fertilidad del suelo afecta el crecimiento, nutrición y rendimiento de algodón cultivado en dos sistemas de riego y diferentes dosis de nitrógeno. Terra Latinoamericana, 37(1), 7–14. https://doi.org/10.28940/terra.v37i1.304
Schmidt, J. P., Dellinger, A. P., & Beegle, D. B. (2009). Nitrogen recommendations for corn: an on-the-go sensor compared with current recommendation methods. Agronomy Journal, 101(4), 916-924. https//doi.org/10.2134/agronj2008.0231x
Servicio de Información Agroalimentaria y Pesquera. (2012). Avance de siembras y cosechas. Resumen nacional por cultivo. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do
Sun, Y., Niu, G., Osuna, P., Zhao, L., Ganjegunte, G., Peterson, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Variability in salt tolerance of Sorghum bicolor L. Agricultural Science, 2(1), 9–21.
Tari, I., Laskay, G., Takács, Z., & Poór, P. (2013). Response of sorghum to abiotic stresses: A review. Journal of Agronomy and Crop Science, 199(4), 264–274. https://doi.org/10.1111/jac.12017
Uchino, H., Watanabe, T., Ramu, K., Sahrawat, K. L., Marimuthu, S., Wani, S. P & Ito, O. (2013). Calibrating chlorophyll meter (SPAD-502) reading by specific leaf area for estimating leaf nitrogen concentration in sweet sorghum. Journal of Plant Nutrition, 36(10), 1640–1646. https://doi.org/10.1080/01904167.2013.799190
Varsa, E. C., Chong, S. K., Abolaji, J. O., Farquhar, D. A., & Olsen, F. J. (1997). Effect of deep tillage on soil physical characteristics and corn (Zea mays L.) root growth and production. Soil and Tillage Research, 43(3–4), 219–228. https://doi.org/10.1016/S0167-1987(97)00041-X
Varvel, G. E., Schepers, S. J., & Francis, D. D. (1997). Chlorophyll meter and stalk nitrate techniques as complementary indices for residual nitrogen. Journal of Production Agriculture, 10(1), 147–151. https://doi.org/10.2134/jpa1997.0147
Wilhelm, W. W., Arnold, S. L., & Schepers, J. S. (2000). Using a nitrate specific ion electrode to determine stalk nitrate-nitrogen concentration. Agronomy Journal, 92(1), 186–189. https://doi.org/10.2134/agronj2000.921186x
Williams-Alanís, H., & Arcos-Cavazos, G. (2015). Comportamiento agronómico de híbridos y progenitores de sorgo para grano en las Huastecas. Agronomia Mesoamericana, 26(1), 87–97. https://doi.org/10.15517/AM.V26I1.16926
Zwirtes, A. L., Reinert, D. J., Gubiani, P. I., Rodrigues, S. V., & Pivoto M. R. (2017). Temperature changes in soil covered by black oat straw. Pesquisa Agropecuaria Brasileira, 52(11), 1127–1130. https://doi.org/10.1590/S0100-204X2017001100020
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).