Feeding: a strategic factor for artificial rearing of calves from dairy farms

Authors

DOI:

https://doi.org/10.15517/am.v31i3.40217

Keywords:

ruminal development, dairy cattle, sustainable production, profitability, calves

Abstract

Introduction. The specialized dairy systems in Colombia represent the most technified sector of the cattle production, nevertheless it has challenges with profitability and competitiveness with the market of imported dairy products, which establishes a disadvantage for local production. However, the rearing of discarded calves for meat production, can be a competitive alternative. Objective. To deepen the management of feeding in the calves rearing stage from dairy farms. Development. Artificial breeding includes the management, care, and feeding of calves until weaning and its objective is to reduce the nutritionally dependent of milk, at the lowest age possible, and to be able to incorporate solid foods into the diet. The basic diet of the calves during rearing includes the colostrum, milk or milk replacer, concentrated feed, and forage. It must be ensured colostrum quality measurement and the offer of quality colostrum, in the first hours postpartum. Milk or milk replacer should be supplied for eight weeks maximum with a tendency to decrease the period without affecting the development of the calves, offering a product of compositional and sanitary quality. The concentrate feed and the forage source can be offered from the first weeks of birth, guaranteeing quality of the diet and removing the feed scraps to avoid gastrointestinal problems. Conclusion. Rearing as a critical stage requires strategic feeding management. The supply of quality colostrum at the right time is the basis of the entire production stage. Liquid diet is essential for the physiological and enzymatic adaptation of the gastrointestinal tract, while solid diet is essential for ruminal development.

Downloads

Download data is not yet available.

References

Amado, L., H. Berends, L.N. Leal, J. Wilms, H. Van-Laar, W.J.J. Gerrits, and J. Martín-Tereso. 2019. Effect of energy source in calf milk replacer on performance, digestibility, and gut permeability in rearing calves. J. Dairy Sci. 102:3994-4001. doi:10.3168/jds.2018-15847

American Feed Industry Association. 1995. A guide to colostrum and colostrum management for dairy calves. USDA, USA.

Angulo, J., L.M. Gómez, L. Mahecha, E. Mejía, J. Henao, and C. Mesa. 2015. Calf’s sex, parity and the hour of harvest after calving affect colostrum quality of dairy cows grazing under high tropical conditions. Trop. Anim. Health Prod. 47:699-705. doi:10.1007/s11250-015-0781-z

Aquino, J., y A. Cruz. 2019. Efecto de la suplementación con dos pre-iniciadores sobre el desempeño productivo de terneras Holstein. Tesis Lic., Escuela Agrícola Panamericana, Zamorano, HON.

Bartier, A.L., M.C. Windeyer, and L. Doepel. 2015. Evaluation of on-farm tools for colostrum quality measurement. J. Dairy Sci. 98:1878-1884. doi:10.3168/jds.2014-8415

Beiranvand, H., G.R. Ghorbani, M. Khorvash, A. Nabipour, and A. Homayouni. 2014. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development. J. Dairy Sci. 97:2270-2280. doi:10.3168/jds.2012-6332

Bielmann, V., J. Gillan, N.R. Perkins, A.L. Skidmore, S. Godden, and K.E. Leslie. 2010. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle. J. Dairy Sci. 93:3713-3721. doi:10.3168/jds.2009-2943

Byrne, C.J., S. Fair, A.M. English, D. Johnston, P. Lonergan, and D.A. Kenny. 2017. Effect of milk replacer and concentrate intake on growth rate, feeding behaviour and systemic metabolite concentrations of pre-weaned bull calves of two dairy breeds. Animal 11:1531-1538. doi: 10.1017/S1751731117000350

Castells, L., A. Bach, G. Araujo, C. Montoro, and M. Terré. 2012. Effect of different forage sources on performance and feeding behavior of Holstein calves. J. Dairy Sci. 95:286-293. doi:10.3168/jds.2011-4405

Castro-Flores, P., y J.A. Elizondo-Salazar. 2012. Crecimiento y desarrollo ruminal en terneros alimentados con iniciador sometido a diferentes procesos. Agron. Mesoam. 23:343-352. doi:10.15517/AM.V23I2.6534

Chapman, C.E., P.S. Erickson, J.D. Quigley, T.M. Hill, H.G. Bateman, F.X. Suarez-Mena, and R.L. Schlotterbeck. 2016. Effect of milk replacer program on calf performance and digestion of nutrients with age of the dairy calf. J. Dairy Sci. 99:2740-2747. doi:10.3168/jds.2015-10372

Cheema, A.T., S.A. Bhatti, G. Akbar, P.C. Wynn, G. Muhammad, H.M. Warriah, and D. McGill. 2016. Effect of weaning age and milk feeding level on pre- and post-weaning growth performance of Sahiwal calves. Anim. Prod. Sci. 58:314-321. doi:10.1071/AN15719

Conneely, M., D.P. Berry, R. Sayers, J.P. Murphy, I. Lorenz, M.L. Doherty, and E. Kennedy. 2013. Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal 7:1824-1832. doi:10.1017/S1751731113001444

Connor, E.E., R.L.B. Vi, C. Li, R.W. Li, and H. Chung. 2013. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth. Funct. Integr. Genomics 13:133-142. doi:10.1007/s10142-012-0308-x

Costa, J.H.C., R.K. Meagher, M.A.G. von-Keyserlingk, and D.M. Weary. 2015. Early pair housing increases solid feed intake and weight gains in dairy calves. J. Dairy Sci. 98:6381-6386. doi:10.3168/jds.2015-9395

Daneshvar, D., M. Khorvash, E. Ghasemi, and A.H. Mahdavi. 2017. Combination effects of milk feeding methods and starter crude protein concentration: Evaluation on performance and health of Holstein male calves. Anim. Feed Sci. Technol. 223:1-12. doi:10.1016/j.anifeedsci.2016.10.025

De-Paula-Vieira, A., M.A.G. von-Keyserlingk, and D.M. Weary. 2010. Effects of pair versus single housing on performance and behavior of dairy calves before and after weaning from milk. J. Dairy Sci. 93:3079-3085. doi:10.3168/jds.2009-2516

Dichio, L., L. Amprimo, C. Azzaro, L. Almirón, G. Puccio, y J. Galli. 2015. Crianza artificial de las terneras en el Módulo de Producción Lechera de la Facultad de Ciencias Agrarias. Agromensajes 42:47-50.

dos-Santos, G., J.T. da-Silva, F.H. Santos, and C.M. Bittar. 2017. Nutritional and microbiological quality of bovine colostrum samples in Brazil. R. Bras. Zootec. 46:72-79. doi:10.1590/s1806-92902017000100011

Drikic, M., C. Windeyer, S. Olsen, Y. Fu, L. Doepel, and J. De-Buck. 2018. Determining the IgG concentrations in bovine colostrum and calf sera with a novel enzymatic assay. J. Anim. Sci. Biotechnol. 9:69. doi:10.1186/s40104-018-0287-4

Dunn, A., A. Ashfield, B. Earley, M. Welsh, A. Gordon, and S.J. Morrison. 2017. Evaluation of factors associated with immunoglobulin G, fat, protein, and lactose concentrations in bovine colostrum and colostrum management practices in grassland-based dairy systems in Northern Ireland. J. Dairy Sci. 100:2068-2079. doi:10.3168/jds.2016-11724

EbnAli, A., M. Khorvash, G.R. Ghorbani, A.H. Mahdavi, M. Malekkhahi, M. Mirzaei, A. Pezeshki, and M.H. Ghaffari. 2016. Effects of forage offering method on performance, rumen fermentation, nutrient digestibility and nutritional behaviour in Holstein dairy calves. J. Anim. Physiol. Anim. Nutr. (Berl). 100:820-827. doi:10.1111/jpn.12442

Eckert, E., H.E. Brown, K.E. Leslie, T.J. DeVries, and M.A. Steele. 2015. Weaning age affects growth, feed intake, gastrointestinal development, and behavior in Holstein calves fed an elevated plane of nutrition during the preweaning stage. J. Dairy Sci. 98:6315-6326. doi: 10.3168/jds.2014-9062

Elizondo-Salazar, J.A., and C.R. Monge-Rojas. 2019. Consumo de alimento balanceado en reemplazos de lechería desde el nacimiento hasta las 8 semanas de edad. Nutr. Anim. Trop. 13(2):58-75. doi:10.15517/nat.v13i2.39698

Elizondo-Salazar, J.A., y M. Sánchez-Álvarez. 2012. Efecto del consumo de dieta líquida y alimento balanceado sobre el crecimiento y desarrollo ruminal en terneras de lechería. Agron. Costarricense 36(2):81-90.

Elizondo-Salazar, J.A., y H.A. Solís-Chaves. 2018. Costo de criar una ternera lechera de reemplazo desde el nacimiento al parto. Agron. Mesoam. 29:547-555. doi:10.15517/ma.v29i3.32545.

Elsohaby, I., M. Claire Windeyer, D.M. Haines, E.R. Homerosky, J.M. Pearson, J.T. McClure, and G.P. Keefe. 2018. Application of transmission infrared spectroscopy and partial least squares regression to predict immunoglobulin g concentration in dairy and beef cow colostrum. J. Anim. Sci. 96:771-782. doi:10.1093/jas/sky003

Elsohaby, I., J.T. McClure, M. Cameron, L.C. Heider, and G.P. Keefe. 2017. Rapid assessment of bovine colostrum quality: How reliable are transmission infrared spectroscopy and digital and optical refractometers? J. Dairy Sci. 100:1427-1435. doi:10.3168/jds.2016-11824

Elsohaby, I., J.T. McClure, S. Hou, C.B. Riley, R.A. Shaw, and G.P. Keefe. 2016. A novel method for the quantification of bovine colostral immunoglobulin G using infrared spectroscopy. Int. Dairy J. 52:35-41. doi:10.1016/j.idairyj.2015.08.004

Espada, M., J.J. Ramos, L.M. Ferrer, A. Loste, A. Ortín, y A. Fernández. 2011. El calostro. clave de supervivencia. Servet, ESP.

Flores, R. 2019. Evaluación de un lacto reemplazante con insumos vegetales no tradicionales en becerros Holstein cruzados. Tesis MSc., Universidad Nacional de Cajamarca, Cajamarca, PER.

Foster, D.M., K.P. Poulsen, H.J. Sylvester, M.E. Jacob, K.E. Casulli, and B.E. Farkas. 2016. Effect of high-pressure processing of bovine colostrum on immunoglobulin G concentration, pathogens, viscosity, and transfer of passive immunity to calves. J. Dairy Sci. 99:8575-8588. doi:10.3168/jds.2016-11204

Gavin, K., H. Neibergs, A. Hoffman, J.N. Kiser, M.A. Cornmesser, S.A. Haredasht, B. Martínez-López, J.R. Wenz, and D.A. Moore. 2018. Low colostrum yield in Jersey cattle and potential risk factors. J. Dairy Sci. 101:6388-6398. doi:10.3168/jds.2017-14308

Gelsinger, S.L., A.M. Smith, C.M. Jones, and A.J. Heinrichs. 2015. Technical note: Comparison of radial immunodiffusion and ELISA for quantification of bovine immunoglobulin G in colostrum and plasma. J. Dairy Sci. 98:4084-4089. doi:10.3168/jds.2014-8491

Gilliland, R.L., L.J. Bush, and J.D. Friend. 2010. Relation of ration composition to rumen development in Early-Weaned dairy calves with observations on ruminal parakeratosis. J. Dairy Sci. 45:1211–1217. doi:10.3168/jds.s0022-0302(62)89598-8

Godden, S.M., J.E. Lombard, and A.R. Woolums. 2019. Colostrum management for dairy calves. Vet. Clin. North Am. Food Anim. Pract. 35:535-556. doi:10.1016/j.cvfa.2019.07.005

Gómez, L.M., S.L. Posada, M. Olivera, R. Rosero, y P. Aguirre. 2017. Análisis de rentabilidad de la producción de leche de acuerdo con la variación de la fuente de carbohidrato utilizada en el suplemento de vacas holstein. Rev. Med. Vet. 34(Supl.):9-22. doi:10.19052/mv.4251

Gonsolin, R. 2013. ¿Cómo hacer negocio con el engorde de machos Holando? Dietas simples y eficientes. Engormix. https://www.engormix.com/ganaderia-carne/articulos/como-hacer-negocio-con-t30397.htm (consultado 12 nov. 2019).

Govil, K., D.S. Yadav, A.K. Patil, S. Nayak, R.P.S. Baghel, P.K. Yadav, C.D. Malapure, and D. Thakur. 2017. Feeding management for early rumen development in calves. J. Entomol. Zool. Stud. 5:1132-1139.

Guilloteau, P., R. Zabielski, and P.C. Garnsworthy. 2005. Digestive secretions in preruminant and ruminant calves and some aspects of their regulation. In: P.C. Garnsworthy, editor, Calf and heifer rearing. University Press, Nottingham, GBR. p. 159-189.

Guilloteau, P., R. Zambielski, and J. Blum. 2009. Gastrointestinal tract and digestion in the young ruminant: Ontogenesis, adaptations, consequences and manipulations. J. Physiol. Pharmacol. 60:37-46.

Gulati, A., N. Galvin, E. Lewis, D. Hennessy, M. O’Donovan, J.J. McManus, M.A. Fenelon, and T.P. Guinee. 2018. Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation. J. Dairy Sci. 101:2710-2723. doi:10.3168/jds.2017-13338

Gutiérrez, W. 2000. Efecto de un plan alimenticio sobre el crecimiento de hembras Holstein Friesian, desde el nacimiento hasta un mes post destete. Tesis de Médico Veterinario. Univ. Nacional de Cajamarca, Cajamarca, PER.

Inagaki, M., H. Muranishi, K. Yamada, K. Kakehi, K. Uchida, T. Suzuki, Y. Yabe, T. Nakagomi, O. Nakagomi, and Y. Kanamaru. 2014. Bovine K-casein inhibits human rotavirus (HRV) infection via direct binding of glycans to HRV. J. Dairy Sci. 97:2653-2661. doi:10.3168/jds.2013-7792

Jami, E., A. Israel, A. Kotser, and I. Mizrahi. 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7:1069-1079. doi:10.1038/ismej.2013.2

Jones, C., and J. Heinrichs. 2016. Early weaning strategies. PennState Extention, USA. https://extension.psu.edu/early-weaning-strategies (accessed May 3, 2020).

Kehoe, S.I., C.D. Dechow, and A.J. Heinrichs. 2007. Effects of weaning age and milk feeding frequency on dairy calf growth, health and rumen parameters. Livest. Sci. 110:267-272. doi:10.1016/j.livsci.2006.11.007

Kehoe, S.I., A.J. Heinrichs, M.L. Moody, C.M, Jones, and M.R. Long. 2011. Comparison of IgG concentration in primiparous and multiparous bovine colostrum. Prof. Anim. Sci. 27:176-180. doi:10.15232/S1080-7446(15)30471-X

Khan, M.A., D.M. Weary, D.M. Veira, and M.A.G. von-Keyserlingk. 2012. Postweaning performance of heifers provided hay during the milk feeding period. J. Dairy Sci. 95:3970-3976. doi:10.3168/jds.2011-5027

Krishnamoorthy, U., and J. Moran. 2011. Rearing young ruminants on milk replacers and starter feeds. FAO, Rome, ITA.

Maccari, P., S. Wiedemann, H.J. Kunz, M. Piechotta, P. Sanftleben, and M. Kaske. 2015. Effects of two different rearing protocols for Holstein bull calves in the first 3 weeks of life on health status, metabolism and subsequent performance. J. Anim. Physiol. Anim. Nutr. 99:737-746. doi:10.1111/jpn.12241

Macheboeuf, D., D.P. Morgavi, Y. Papon, J.L. Mousset, and M. Arturo-Schaan. 2008. Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim. Feed Sci. Technol. 145:335-350. doi:10.1016/j.anifeedsci.2007.05.044

Mann, S., F.A. Leal Yepes, T.R. Overton, A.L. Lock, S.V. Lamb, J.J. Wakshlag, and D.V. Nydam. 2016. Effect of dry period dietary energy level in dairy cattle on volume, concentrations of immunoglobulin G, insulin, and fatty acid composition of colostrum. J. Dairy Sci. 99:1515-1526. doi:10.3168/jds.2015-9926

McCracken, M.M., K.M. Morrill, A.L. Fordyce, and H.D. Tyler. 2017. Technical note: Evaluation of digital refractometers to estimate serum immunoglobulin G concentration and passive transfer in Jersey calves. J. Dairy Sci. 100:8438-8442. doi:10.3168/jds.2017-12847

McGuirk, S.M., and M. Collins. 2004. Managing the production, storage, and delivery of colostrum. Vet. Clin. North Am. Food Anim. Pract. 20:593-603. doi:10.1016/j.cvfa.2004.06.005

Ministerio de Agricultura, y Fundación para la Innovación Agraria. 2010. Producción de carne de ternero bajo un sistema asociativo. Pecuario / Bovinos 109. Ministerio de Agricultura, y Fundación para la Innovación Agraria, CHL.

Morrill, K.M., E. Conrad, A. Lago, J. Campbell, J. Quigley, and H. Tyler. 2012. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J. Dairy Sci. 95:3997-4005. doi:10.3168/jds.2011-5174

Nemati, M., H. Amanlou, M. Khorvash, M. Mirzaei, B. Moshiri, and M.H. Ghaffari. 2016. Effect of different alfalfa hay levels on growth performance, rumen fermentation, and structural growth of Holstein dairy calves. J. Anim. Sci. 94:1141-1148. doi:10.2527/jas.2015-0111

Ollivett, T., D. Nydam, T. Linden, D. Bowman, and M. Van-Amburgh. 2012. Effect of nutritional plane on health and performance in dairy calves after experimental infection with Cryptosporidium parvum. J. Am. Vet. Med. Assoc. 241:1514-1520. doi:10.2460/javma.241.11.1514.

Park, Y.W. 2009. Overview of bioactive components in milk and dairy products. In: Y.W. Park, editor, Bioactive components in milk and dairy products. Wiley-Blackwell, USA. p. 1-12. doi:10.1002/9780813821504.ch1

Pechova, A., S. Slosarkova, S. Stanek, E. Nejedla, and P. Fleischer. 2019. Evaluation of colostrum quality in the Czech Republic using radial immunodiffusion and different types of refractometers. Veterinárdní Medicína 64(2):51-59. doi:10.17221/122/2018-VETMED

Quigley, J.D., L. Deikun, T.M. Hill, F.X. Suarez-Mena, T.S. Dennis, and W. Hu. 2019. Effects of colostrum and milk replacer feeding rates on intake, growth, and digestibility in calves. J. Dairy Sci. 102:11016-11025. doi:10.3168/jds.2019-16682

Raeth, M., D. Ziegler, B. Ziegler, D. Schimek, and D.L. Cook. 2016. Pre- and postweaning performance and health of dairy calves fed milk replacers with differing protein sources. Prof. Anim. Sci. 32:833-841. doi:10.15232/pas.2016-01536

Salazar-Acosta, E., y J.A. Elizondo-Salazar. 2019. El tratamiento térmico del calostro aumenta la absorción de inmunoglobulinas G en terneras Holstein. Agron. Mesoam. 30:229-238. doi:10.15517/am.v30i1.32356

Schäff, C.T., J. Gruse, J. Maciej, M. Mielenz, E. Wirthgen, A. Hoeflich, M. Schmicke, R. Pfuhl, P. Jawor, T. Stefaniak, and H.M. Hammon. 2016. Effects of feeding milk replacer and libitum or in restricted amounts for the first five weeks of life on the growth, metabolic adaptation, and immune status of newborn calves. PLoS One 11:e0168974. doi:10.1371/journal.pone.0168974

Sharp, K.D. 2017. The effect of feeding frequency and alternative proteins in milk. MSc. Thesis, University of Illinois, IL, USA.

Shivley, C.B., J.E. Lombard, N.J. Urie, D.M. Haines, R. Sargent, C.A. Kopral, T.J. Earleywine, J.D. Olson, and F.B. Garry. 2018. Preweaned heifer management on US dairy operations : Part II. Factors associated with colostrum quality and passive transfer status of dairy heifer calves. J. Dairy Sci. 101:9185-9198. doi:10.3168/jds.2017-14008

Silper, B.F., A.M.Q. Lana, A.U. Carvalho, C.S. Ferreira, A.P.S. Franzoni, J.A.M. Lima, H.M. Saturnino, R.B. Reis, and S.G.Coelho. 2014. Effects of milk replacer feeding strategies on performance, ruminal development, and metabolism of dairy calves. J. Dairy Sci. 97:1016-1025. doi:10.3168/jds.2013-7201

Silva, A.L., M.I. Marcondes, E. Detmann, M.M. Campos, F.S. Machado, S.C. Valadares-Filho, M.M.D. Castro, and J. Dijkstra. 2017. Determination of energy and protein requirements for crossbred Holstein × Gyr preweaned dairy calves. J. Dairy Sci. 100:1170-1178. doi:10.3168/jds.2016-11197

Silva-Del-Río, N., D. Rolle, A. García-Muñoz, S. Rodríguez-Jiménez, A. Valldecabres, A. Lago, and P. Pandey. 2017. Colostrum immunoglobulin G concentration of multiparous Jersey cows at first and second milking is associated with parity, colostrum yield, and time of first milking, and can be estimated with Brix refractometry. J. Dairy Sci. 100:5774-5781. doi:10.3168/jds.2016-12394

Sobczuk-Szul, M., Z. Wielgosz-Groth, M. Wroski, M. and A. Rzemieniewski. 2013. Changes in the bioactive protein concentrations in the bovine colostrum of Jersey and Polish Holstein - Friesian cows. Turk. J. Vet. Anim. Sci. 37:43-49.

Suárez-Mena, F.X., W. Hu, T.S. Dennis, T.M. Hill, and R.L. Schlotterbeck. 2017. β-Hydroxybutyrate (BHB) and glucose concentrations in the blood of dairy calves as influenced by age, vaccination stress, weaning, and starter intake including evaluation of BHB and glucose markers of starter intake. J. Dairy Sci. 100:2614-2624. doi:10.3168/jds.2016-12181

Svensson, C., and P. Liberg. 2006. The effect of group size on health and growth rate of Swedish dairy calves housed in pens with automatic milk-feeders. Prev. Vet. Med. 73:43-53. doi:10.1016/j.prevetmed.2005.08.021

Svensson, C., K. Lundborg, U. Emanuelson, and S.O. Olsson. 2003. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev. Vet. Med. 58:179-197. doi:10.1016/S0167-5877(03)00046-1

Tedeschi, L.O., and D.G. Fox. 2009. Predicting milk and forage intake of nursing calves. J. Anim. Sci. 87:3380-3391. doi:10.2527/jas.2009-2014

Terré, M., E. Pedrals, A. Dalmau, and A. Bach. 2013. What do preweaned and weaned calves need in the diet: A high fiber content or a forage source? J. Dairy Sci. 96:5217-5225. doi:10.3168/jds.2012-6304

Terui, H., J.L. Morrill, and J.J. Higgins. 1996. Evaluation of wheat gluten in milk replacers and calf starters. J. Dairy Sci. 79:1261-1266. doi:10.3168/jds.S0022-0302(96)76480-9

Thiha, A., and F. Ibrahim. 2015. A colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors (Basel) 15:11431-11441. doi:10.3390/s150511431

Thu-Hang, B.P., J. Dicksved, K.S. Sjaunja, and E. Wredle. 2017. Colostrum quality, IgG absorption and daily weight gain of calves in small-scale dairy production systems in Southern Vietnam. Trop. Anim. Health Prod. 49:1143-1147. doi:10.1007/s11250-017-1308-6

USDA. 2007. Dairy 2007: Heifer calf health and management practices on U.S. dairy operations, 2007. USDA, USA.

USDA. 2013. Carne de ternero la granja a la mesa. USDA, USA. https://www.fsis.usda.gov/wps/portal/informational/en-espanol/hojasinformativas/preparacion-de-las-carnes/carne-de-ternero/carne-de-ternero-granja-a-la-mesa (consultado 13 may. 2020).

Zarei, S., G. Reza Ghorbani, M. Khorvash, O. Martin, A. Hossein-Mahdavi, and A. Riasi. 2017. The impact of season, parity, and volume of colostrum on Holstein dairy cows colostrum composition. Agric. Sci. 8:572-581. doi:10.4236/as.2017.87043

Published

2020-09-01

How to Cite

Nemocón-Cobos, A. M., Angulo-Arizala, J., Gallo-Mar´´ín, J. A., & Mahecha-Ledesma, L. (2020). Feeding: a strategic factor for artificial rearing of calves from dairy farms. Agronomía Mesoamericana, 31(3), 803–819. https://doi.org/10.15517/am.v31i3.40217

Most read articles by the same author(s)

<< < 1 2