Chitosan applied in the treatment of wastewater from palm oil production

Authors

DOI:

https://doi.org/10.15517/am.v33i1.44288

Keywords:

wastewater, multivariate analysis, biopolymer, treatment of effluents, jar test

Abstract

Introduction. The use of biopolymers in effluents treatment allows to control the environmental impact associated with agroindustrial wastewater discharge. Objective. To evaluate the effectiveness of chitosan as a natural coagulant in the treatment of palm oil production effluents. Materials and methods. The following parameters were determined: Chemical Oxygen Demand (COD), total suspended solids (TSS) and volatile solids (TVS), turbidity and fats and oils (GYA) in wastewater associated with palm oil production from the municipality of Agustín Codazzi in the department of Cesar (Colombia), by the jar test assay. Chitosan was applied in doses of: 100, 200, 300, 400, and 0 mg L-1 at three pH levels 4, 5, and 6 of the water. A completely randomized, two-way, fixed effects experimental was implemented. A multivariate analysis of the physical-chemical parameters of industrial effluent was used for data analysis. The study was conducted in 2012. Results. Chitosan allowed a reduction of more than 87 % turbidity, COD, TSS, TVS and fats and oils in all coagulant doses. While the control (0 mg L-1) was statistically different (p<0.05) to all the treatments. In the multivariate analysis of the data, the principal component 1 (PC1) explained 79.3 % of the total variance of the variables. Conclusion. Doses of 100, 200, 300, and 400 mg L-1 of chitosan evaluated as a natural coagulant in water treatment, decreased the concentration of pollutants in effluents associated with palm oil production.

Downloads

Download data is not yet available.

References

Adnan, O., Abidin, Z. Z., Idris, A., Kamarudin, S., & Al-Qubaisi, M. S. (2017). A novel biocoagulant agent from mushroom chitosan as water and wastewater therapy. Environmental Science and Pollution Research, 24, 20104–20112. https://doi.org/10.1007/s11356-017-9560-x

Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2006). Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chemical Engineering Journal, 118(1–2), 99–105. https://doi.org/10.1016/j.cej.2006.02.001

Andía-Cárdenas, Y. (2000). Tratamiento de agua: coagulación y floculación. Servicio de Agua Potable y Alcantarillado de Lima.

Balanta, D., Grande, C. D., & Zuluaga, F. (2010). Extracción, identificación y caracterización de quitosano del micelio de Aspergillus niger y sus aplicaciones como material bioadsorbente en el tratamiento de aguas. Revista Iberoamericana de Polímeros, 11(5), 297–316.

Cadeza-Espinosa, M., Brambila-Paz, J. J., Chalita-Tovar, L. E., & González-Estrada, A. (2017). Evaluación financiera con la metodología de opciones reales de una inversión para producir quitosano con base en desperdicio de camarón. Agricultura, Sociedad y Desarrollo, 14(4), 533–545.

Caldera, Y., Rodríguez, Y., Oñate, H., Prato, J., & Gutiérrez, E. (2011). Eficiencia del quitosano como coagulante durante el tratamiento de aguas de baja turbidez asociadas a la producción de petróleo. Revista Tecnocientífica URU, 1(1), 45–52.

Carrasquero-Ferrer, S. J., González-Sahinian, Y. G., Colina-Andrade, G., & Díaz-Montiel, A. R. (2019). Eficiencia del quitosano como coagulante en el postratamiento de efluentes de una planta de sacrificio de cerdos. Orinoquia, 23(2), 36–46. https://doi.org/10.22579/20112629.567

Greenberg, A., Clesceri, L., & Eaton, A. (2012). Standard methods for the examination of water and wastewater (22nd Ed.). American Public Health Association.

Corley, R. H. V. (2009). How much palm oil do we need? Environmental Science & Policy, 12(2), 134–139. https://doi.org/10.1016/j.envsci.2008.10.011

de Andrade, E. M., Araújo, L. F. P., Rosa, M. F., Disney, W., & Alves, A. B. (2007). Seleção dos indicadores da qualidade das águas superficiais pelo emprego da análise multivariada. Engenharia Agrícola, 27(3), 683–690. https://doi.org/10.1590/S0100-69162007000400011

Divakaran, R., & Sivasankara-Pillai, V. N. (2002). Flocculation of river silt using chitosan. Water Research, 36(9), 2414–2418. https://doi.org/10.1016/s0043-1354(01)00436-5

Duarte, E. R., Olivero-Verbel, J., & Jaramillo, B. E. (2009). Remoción de cromo de aguas residuales de curtiembres usando quitosano obtenido de desechos de camarón. Scientia et Technica, 2(42), 290–295.

Grem, I. C. D. S., Lima, B. N. B., Carneiro, W. F., Queirós, Y. G. D. C., & Mansur, C. R. E. (2013). Chitosan microspheres applied for removal of oil from produced water in the oil industry. Polímeros, 23(6), 705–711. https://doi.org/10.4322/polimeros.2014.008

Hassan, M. A. A., & Puteh, M. H. (2007). Pre-treatment of palm oil mill effluent (POME): a comparison study using chitosan and alum. Malaysian Journal of Civil Engineering, 19(2), 38–51. https://doi.org/10.11113/MJCE.V19N2.197

Kamaruddin, M. A., Ismail, N., Kuen, T. H., & Alrozi, R. (2018). Sustainable treatment of Palm Oil Mill Effluent (POME) by using pectin and chitosan in jar test protocol–sequential comparison. International Journal of Integrated Engineering, 10(9), 63–68. https://doi.org/10.30880/ijie.2018.10.09.012

Kadarusman, Y. B., & Herabadi, A. G. (2018). Improving sustainable development within Indonesian palm oil: the importance of the reward system. Sustainable Development, 26(4), 422–434. https://doi.org/10.1002/sd.1715

Khokthong, W., Zemp, D. C., Irawan, B., Sundawati, L., Kreft, H., & Hölscher, D. (2019). Drone-Based Assessment of Canopy Cover for Analyzing Tree Mortality in an Oil Palm Agroforest. Frontiers in Forests and Global Change, 2(12), 1–10. https://doi.org/10.3389/ffgc.2019.00012

Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

López-Maldonado, E. A., Oropeza-Guzman, M. T., Jurado-Baizaval, J. L., & Ochoa-Terán, A. (2014). Coagulation–flocculation mechanisms in wastewater treatment plants through zeta po-tential measurements. Journal of Hazardous Materials, 279, 1–10. https://doi.org/10.1016/j.jhazmat.2014.06.025

Meijaard, E., Garcia-Ulloa, J., Sheil, D., Wich, S. A., Carlson, K. M., Juffe-Bignoli, D., & Brooks, T. M. (2018). Oil palm and biodiversity: A situation analysis by the IUCN Oil Palm Task Force. IUCN Publication. https://doi.org/10.2305/IUCN.CH.2018.11.en

Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Taati-Zadeh, H. (2010). Multivariate statistical analysis of surface water quality based on correla-tions and variations in the data set. Desalination, 260(1-3), 129–136. https://doi.org/10.1016/j.desal.2010.04.053

Pacheco-Aguilar, R., Leyva-Soto, P., Carvallo-Ruiz, G., García-Carreño, L. F., & Márquez-Ríos, E. (2009). Efecto de la concentración de quitosano y ph sobre la remoción de sólidos en agua de cola de la industria sardinera. Interciencia, 24(4), 274–279.

Pérez, L. (2005). Teoría de la sedimentación. Universidad Tecnológica Nacional.

Pérez, F., & Camacho, K. (2011). Tecnologías para el tratamiento de aguas servidas. Recuperado el 20 de agosto de 2019 de https://es.scribd.com/document/151816818/Perez-Alarcon-y-Camacho-Alcala

Red de información y comunicación del sector Agropecuario Colombiano. (2019). Reporte: área, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

R Core Team. (2017). R: A language and environment for statistical computing. R Fundation for Statistical Computing. https://www.R-project.org/

Ríos-Donato, N., Navarro-Mendoza, R., Ávila-Rodríguez, M., & Mendizábal-Mijares, E. (2006). Obtención de sulfato de quitosano y su aplicación en el proceso de coagulación-floculación de suspensiones coloidales anióni-cas de caolinita. Iberoamericana de Polímeros, 7(3), 145–161.

Rodríguez, Y. (2011). Eficiencia del quitosano como coagulante en el tratamiento de las aguas asociadas a la producción de petróleo [Tesis de Maestría, no publicada]. Universidad del Zulia.

Rodriguez-Jimenez, D. M., & Gallego-Suarez, D. J. (2019). Evaluación del quitosano como coagulante para el tratamiento de efluentes piscícolas. Revista Colombiana de Biotecnología, 21(1), 6–17. https://doi.org/10.15446/rev.colomb.biote.v21n1.73340

Rojas, C., Rincón, N., Díaz, A., Colina, G., Behllng, E., Chacín, E., & Fernández, N. (2008). Evaluación de una unidad de flotación con aire disuelto para el tratamiento de aguas aceitosas. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 31(1), 50–57.

Saifuddin, N. M., & Kumaran, P. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1), 44–53. https://10.2225/vol8-issue1-fulltext-7

Saifuddin, N., & Dinara, S. (2011). Pretreatment of Palm Oil Mill Effluent (POME) using magnetic chitosan. Journal of Chemistry, 8(S1), S67–S78. https://doi.org/10.1155/2011/427532

Santosa, S. J. (2008). Palm oil boom in Indonesia: from plantation to downstream products and biodiesel. CLEAN – Soil Air Water, 36(5–6), 453–465. https://doi.org/10.1002/clen.200800039

Secretaría Jurídica Distrital de la Alcaldía Mayor de Bogotá D.C. (2010). Decreto 3930 de 2010 Nivel Nacional. Diario Oficial 47837. http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=40620

Sharma, N., Singh, D., Rani, R., Sharma, D., Pandey, H., & Agarwal, V. (2019). Chapter 13 - Chitosan and Its Nanocarriers: Applications and Opportunities In D. Kumar, P. Ahmad, S. Sharma, D. Kumar, & N. Kishore (Eds.), Nanomaterials in Plants, Algae and Microorganisms (Vol. 2, pp. 267–286). Academic Press. https://doi.org/10.1016/b978-0-12-811488-9.00013-5

Stroparo, E. C., Mollinari, K. C., & Souza, K. V. D. (2018). Use of chitosan in the remediation of water from purification of biodiesel. Polímeros, 28(5), 400–405. https://doi.org/10.1590/0104-1428.02416

Sundram, K., Sambanthamurthi, R., & Tan, Y. A. (2003). Palm fruit chemistry and nutrition. Asia Pacific Journal of Clinical Nutrition, 12(3), 355–362. https://pubmed.ncbi.nlm.nih.gov/14506001/

Thani, M. I., Hussin, R., Ramlah, W., & Sulaiman, M. S. (Eds.) (1999). Industrial Processes & The Environment (Handbook No. 3): The Crude Palm Oil Industry. Department of Environment.

Velasco-Reyes, J. F., Díaz-Narváez, G. C., Ramírez-Carrillo, R. E., & Pérez-Cabrera, L. E. (2019). Producción de quitosano a partir de desechos de camarón generados del procesamiento industrial. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 4, 897–901.

Wang, J. -P., Chen, Y. -Z., Yuan, S. -J., Sheng, G. -P., & Yu, H. -Q. (2009). Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility. Water Research, 43(20), 5267–5275. https://doi.org/10.1016/j.watres.2009.08.040

Zhang, Y., Yan, L., Qiao, X., Chi, L., Niu, X., & Mei, Z. (2008). Integration of biological method and membrane technology in treating palm oil mill effluent. Journal of Environmental Sciences, 20(5), 558–564. https://doi.org/10.1016/S1001-0742(08)62094-X

Zhang, Z., Jing, R., He, S., Qian, J., Zhang, K., Ma, G., Chang, X., Zhang, M., Li, Y. (2018). Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid. Separation and Purification Technology, 206(29), 131–139. https://doi.org/10.1016/j.seppur.2018.05.051

Published

2021-10-19

How to Cite

Rodríguez-Jiménez, D. M., Burbano-Erazo, E., & Díaz-Rodríguez, Y. J. (2021). Chitosan applied in the treatment of wastewater from palm oil production. Agronomía Mesoamericana, 33(1), 44288. https://doi.org/10.15517/am.v33i1.44288

Most read articles by the same author(s)