In vitro tolerance of Rubus spp. cultivars to mannitol-simulated drought stress

Authors

DOI:

https://doi.org/10.15517/am.v33i1.46442

Keywords:

seedlings, water potential, selection, drought, genotypes

Abstract

Introduction. The characterization of hydric drought stress tolerant cultivars of Rubus spp. in experimental fields is complicated by the difficulty of controlling the external factors of the environment where they are installed. In vitro stress induction is an efficient tool to study plant response mechanisms and is used in breeding programs for the selection of hydric drought stress tolerant genotypes. Objective. To evaluate the in vitro morphological and physiological response of explants in three cultivars and the wild accession of Rubus spp. under mannitol-simulated hydric drought stress conditions. Materials and methods. The study was carried out in the Biology Laboratory of Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Peru, during the year 2020. A completely randomized design with factorial arrangement (Factor A: four genotypes and Factor B: simulated water potentials with mannitol: 0, -0.2, -0.3, and -0.4 MPa) and four explants per experimental unit were used. Results. The cultivars responded differently under mannitol-simulated hydric drought stress. The Navaho and Tupy cultivars registered higher tolerance. Conclusion. The morphological and physiological traits related to the root length, the water content of the shoot, root and leaf allowed to identify Rubus spp. cultivars tolerant to mannitol-simulated hydric drought stress in the vegetative phase.

Downloads

Download data is not yet available.

References

Aazami, M. A., Torabi, M., & Jalili, E. (2010). In vitro response of promosing tomato genotypes for tolerance to osmotic stress. African Journal of Biotechnology, 9(26), 4014–4017. https://www.ajol.info/index.php/ajb/article/view/82552

Alice, L. A., & Campbell, C. S. (1999). Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. American Journal of Botany, 86(1), 81–97. https://doi.org/10.2307/2656957

Anjum, S. S., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8, Article 69. https://doi.org/10.3389/fpls.2017.00069

Bangar, P., Chaudurry, A., Tiwari, B., Kumar, S., Kumari, R., & Bhat, K. V. (2019). Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology, 43(1), 58–69. https://doi.org/10.3906/biy-1801-64

Carloni, E., Tommasino, E., Colomba, E. L., Ribotta, A., Quiroga, M., Griffa, S., & Grunberg, K. (2017). In vitro selection and characterization of buffelgrass somaclones with different responses to water stress. Plant Cell Tissue and Organ Culture, 130(2), 265–277. https://doi.org/10.1007/s11240-017-1220-9

Chutipaijit, S. (2016). Changes in physiological and antioxidant activity of indica rice seedlings in response to mannitol-induced osmotic stress. Chilean Journal of Agricultural Research, 76(4), 455–62. https://doi.org/10.4067/S0718-58392016000400009

Collado, R., Pérez, A. C., Martínez, I. P., Rojas, L. E., Leiva-Mora, M., García, L. R., Veitía, N., Martirena, A., Torres, D., & Rivero, L. (2017). Diferenciación de cultivares de Phaseolus vulgaris L. mediante respuesta del tejido foliar expuesto a estrés hídrico y salino. Biotecnología Vegetal, 17(1), 25–32. https://revista.ibp.co.cu/index.php/BV/article/view/534/html

Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and root of soybean seedlings. Plant Phyiology and Biochemistry, 146, 1–12. https://doi.org/10.1016/j.plaphy.2019.11.003

Elzaher, M. H. A., Elwahab, S. M. A., Elsharabasy, S. F., Maiada, E. D., & Fouad, H. A. (2019). Rooting recovery and chemical analysis of date palm shootlets after sorbitol and mannitol sugars stress. Plant Archives, 19(Suppl.2), 886–894. http://plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/160%20(886-894).pdf

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/s00018-014-1767-0

Gómez, D., Martínez, J., Hernández, L., Escalante, D., Yabor, L., Shershen, & Lorenzo, J. C. (2020). Modifying sugarcane mineral levels through sodium chloride and mannitol exposure in temporary immersion bioreactors. In Vitro Cellular & Developmental Biology – Plant, 56, 169–176. https://doi.org/10.1007/s11627-019-10025-3

Guo, T., Tian, C., Chen, C., Duan, Z., Zhu, Q., & Sun, L. Z. (2020). Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. Plant Physiology and Biochemistry, 154, 85–93. https://doi.org/10.1016/j.plaphy.2020.06.008

Hashempoor, S., Ghaheri, M., Kahrizi, D., Kazemi, N., Muhammadi, S., Safavi, S.M., Ghorbani, T., Rahmanian, E., & Heshmatpanaah, M. (2018). Effects of different concentrations of mannitol on gene expression in Stevia rebaudiana Bertoni. Cellular and Molecular Biology, 64(2), 28–31. https://doi.org/10.14715/cmb/2018.64.2.6

Hernández, L., Gómez, D., Valle, B., Tebbe, C. C., Trethowan, R., Acosta, R., Yabor, L., & Lorenzo, J. C. (2018). Carotenoids in roots indicated the level of stress induced by mannitol and sodium azide treatment during the early stages of maize germination. Acta Physiologiae Plantarum, 40(9), Article 163. https://doi.org/10.1007/s11738-018-2744-2

Jolayemi, O. L., & Opabode, J. T. (2018). Responses of cassava (Manihot esculenta Crantz) varieties to in vitro mannitol-induced drought stress. Journal of Crop Improvement, 32(4), 566–578. https://doi.org/10.1080/15427528.2018.1471431

Klimaszewska, K., Bernier-Cardou, M., Cyr, D. R., & Sutton, B. C. S. (2000). Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cellular & Developmental Biology - Plant, 36(4), 279-286. https://doi.org/10.1007/s11627-000-0051-1

Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemestry and Biophysics, 444(2), 139–158. https://doi.org/10.1016/j.abb.2005.10.018

Marssaro, A. L., Morais-Lino, L. S., Cruz, J. L., Ledo, C. A. S., & Santos-Serejo, J. A. (2017). Simulation of in vitro water deficit for selecting drought-tolerant banana genotypes. Pesquisa Agropecuária Brasileira, 52(12), 1301–1304. https://doi.org/10.1590/S0100-204X2017001200021

Millones, C. E. (2018). Establecimiento y ensayos preliminares de propagación in vitro de zarzamora silvestre (Rubus sp.) del Centro Poblado San Salvador, región Amazonas. Revista de Investigación Científica UNTRM: Ciencias Naturales e Ingeniería, 1(2), 31–38. http://doi.org/10.25127/ucni.v3i2.316

Millones, C. E., & Vásquez, E. R. (2020). Regeneración y enraizamiento de brotes adventicios etiolados de cultivares de zarzamora (Rubus sp.). Revista de Investigaciones Altoandinas, 22(4), 338–342. https://doi.org/10.18271/ria.2020.195

Moreno-Bermúdez, L. J., Reyes, M., Gómez-Kosky, R., Urquiza, M. R., & Chong-Pérez, B. (2015). Efecto del estrés hídrico con PEG 6000 sobre el contenido de agua de plantas in vitro de Musa spp. ‘Grande naine’ (AAA) y ‘Pelipita’ (ABB). Biotecnología Vegetal, 15(4), 251–254. https://revista.ibp.co.cu/index.php/BV/article/view/503

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & Van-Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684–692. https://doi.org/10.1016/j.tplants.2010.09.008

Pant, N. C., Agarrwal, R., & Agrawal, S. (2014). Mannitol-induced drought stress on calli of Trigonella foenum-graecum L. Var. RMt-303. Indian Journal of Experimental Biology, 52(11), 1128-1137.

Patmi, Y. S., Pitoyo, A., Solichatun, & Sutarno. (2020). Effect of drought stress on morphological, anatomical, and physiological characteristics of Cempo Ireng cultivar mutant rice (Oryza sativa L.) strain 51 irradiated by gamma-ray. Journal of Physics: Conference Series, 1436, Article 012015. https://doi.org/10.1088/1742-6596/1436/1/012015

Piwowarczyk, B., Kamińska, I., & Rybiński, W. (2014). Influence of PEG generated osmotic stress on shoot regeneration and some biochemical parameters in Lathyrus culture. Czech Journal of Genetic and Plant Breeding, 50(2), 77–83. https://doi.org/10.13140/2.1.4330.3040

Rangel-Fajardo, M. A., Gómez-Montiel, N., Tucuch-Haas, J. I., Basto-Barbudo, D. C., Villalobos-Gonzáles, A., & Burgos-Díaz, J. A. (2019). Polietilenglicol 8000 para identificar maíz tolerante al estrés hídrico durante la germinación. Agronomía Mesoamericana, 30(1), 255–266. https://doi.org/10.15517/am.v30i1.34198

Rolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P., & Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Enviromental and Experimental Botany, 110, 27–35. https://doi.org/10.1016/j.envexpbot.2014.09.006

Rukundo, P., Carpentier, S. C., & Swennen, R. (2012). Deveopment of in vitro technique to screen for drought tolerant banana varieties by sorbitol induced osmotic stress. African Journal of Plant Science, 6(15), 416–425. https://doi.org/10.5897/AJPS12.101

Samarina, L., Matskiv, A., Simonyan, T., Koninskaya, N., Malyarovskaya, V., Gvasaliya, M., Malyukova, L., Tsaturyan, G., Mytdyeva, A., Martínez-Montero, M. E., Choudhary, R., & Ryndin, A. (2020). Biochemical and genetic responses of tea (Camellia sinensis (L.) Kuntze) microplants under mannitol-induced osmotic stress in vitro. Plants, 9(12), Article 1795. https://doi.org/10.3390/plants9121795

Sapeta, H., Costa, J. M., Lourenço, T, Maroco, J., Linde, P. V. D., & Oliveira, M. M. (2013). Drought stress response in Jathropa curcas: growth and physiology. Environmental and Experimental Botany, 85, 76–84. https://doi.org/10.1016/j.envexpbot.2012.08.012

Sattar, F. A., Hamooh, B. T., Wellman, G., Ali, M. A., Shah, S. H., Anwar, Y., & Mousa, M. A. A. (2021). Growth and biochemical responses of potato cultivars under in vitro litium chloride and mannitol simulated salinity and drought stress. Plants, 10(5), 924. https://doi.org/10.3390/plants10050924

Singh, D., & Kumar, A. (2020). In vitro screening and characterization of selected elite clones of Eucalyptus tereticornis Sm. for salt stress. Journal of Plant Growth Regulation, 40, 694–706. https://doi.org/10.1007/s00344-020-10138-9

Tardieu, F., Simonneau, T., & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733–759. https://doi.org/10.1146/annurev-arplant-042817-040218

Vergara, M. F., Vargas, J., & Acuña, J. F. (2016). Physicochemical characteristics of blackberry (Rubus glaucus Benth.) fruits from four production zones of Cundinamarca, Colombia. Agronomía Colombiana, 34(3), 336–345. https://doi.org/10.15446/agron.colomb.v34n3.62755

Xu, W., Cui, K., Xu, A., Nie, L., Huang, J., & Peng, S. (2015). Drought stress condition increases root to shootratio via alteration of carbohydrate partitotining and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37(2), Article 9. https://doi.org/10.1007/s11738-014-1760-0

Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), Article 50. https://doi.org/10.3390/horticulturae7030050

Wu, J., Miller, S. A., Hall, H. K., & Mooney, P. A. (2009). Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell Tissue and Organ Culture, 99, 17–25. https://doi.org/10.1007/s11240-009-9571-5

Zhu, Y., Luo, X., Nawaz, G., Yin, J., & Yang J. (2020). Physiological and biochemical responses of four cassava cultivars to drought stress. Scientific reports, 10(1), Article 6968. https://doi.org/10.1038/s41598-020-63809-8

Published

2021-12-14

How to Cite

Millones, C., & Vásquez, E. (2021). In vitro tolerance of Rubus spp. cultivars to mannitol-simulated drought stress. Agronomía Mesoamericana, 33(1), 46442. https://doi.org/10.15517/am.v33i1.46442