Multivariate analysis of soils irrigated with aquaculture wastewater
DOI:
https://doi.org/10.15517/am.v34i1.50028Keywords:
farming, soil quality, principal component analysis, water qualityAbstract
Introduction. Aquaculture wastewater is an important resource that can be used for irrigation of agricultural land. Objective. To evaluate the physical, chemical, and biological properties of soils with continuous irrigation of aquaculture wastewater and to identify the variables that provide more information in regarding their behavior under irrigation. Materials and methods. The treatments were three agricultural soils, located in the south of the state of Tlaxcala, Mexico, in 2018 soil sampling was performed at a depth of 0-30 cm and nine replicates to determine: pH, organic matter, electrical conductivity, nitrate, ammonium, total N, phosphorus, potassium, calcium, magnesium, texture, apparent density, and microbial activity, with which a principal component analysis (PCA) was applied. Results. Irrigation with aquaculture wastewater increased the concentration of phosphorus, potassium, calcium, ammonium, and nitrates. Through linear correlation analysis and PCA, it was obtained that the first principal component explained 76 % of the total variance, associated with pH, organic matter, sand, total N, potassium, magnesium, and ammonium, while the second component explained 23 % of the total variance, linked to phosphorus and adsorption by the exchange complex provided by the clay. Conclusion. Irrigation with aquaculture wastewater improved soil fertility and with the principal component analysis (PCA) phosphorus, clay particle, and magnesium were identified as indicator variables that will support the management of soils irrigated with aquaculture wastewater.
Downloads
References
Alcarraz Quispe, E. W., Tapia Figueras, M. L., Bustamante Pezoa, A., Tapia Laguna, O., Wacyk Gonzales, J., & Escalona Contreras, V. H. (2018). Evaluación de la concentración de nitratos, calidad microbiológica y funcional en lechuga (Lactuca sativa L.) cultivadas en los sistemas acuapónico e hidropónico. Anales Científicos, 79(1), 101–110. https://doi.org/10.21704/ac.v79i1.1145
Álvarez-Arteaga, G., Ibáñez-Huerta, A., Orozco-Hernández, M., & García-Fajardo, B. (2020). Regionalización de indicadores de calidad para suelos degradados por actividades agrícolas y pecuarias en el altiplano central de México. Quivera Revista de Estudios Territoriales, 22(2), 5–19. https://quivera.uaemex.mx/article/view/13302
Álvarez Sánchez, E., & Marín Campos, M. A. (2011). Manual de procedimientos analíticos para suelos y plantas. Universidad Autónoma Chapingo. https://bit.ly/3OIU5xr
Amaro, E. J., Márquez, E., & Llanes, J. M. (2019). Diagnóstico inicial de la evolución de un suelo degradado. Avances, 21(1), 129–138. https://www.ciget.pinar.cu/ojs/index.php/publicaciones/article/view/422
Anderson, J. P. (1982). Soil respiration. In A. L. Page, R. H. Miller, & D.R. Keeney (Eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties (2nd ed., pp. 831–871). Soil Science Society of America, Madison.
Bray, R. H., & Kurtz, T. L. (1945). Determination of total, organic and available forms of phosphorus in soil. Soil Science, 59(1), 39–45. https://bit.ly/3XIHCh3
Bremner, J. M. (1965). Total nitrogen. In A. G. Norman, (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (2nd ed., pp. 1149–1178). American Society of Agronomy.
Chen, L., Feng, Q., Li, C., Wei, Y., Zhao, Y., Feng, Y., Zheng, H., Li, F., & Li, H. (2017). Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions. Scientific Reports, 7, Article 11193. https://doi.org/10.1038/s41598-017-11678-z
Ciji, A., & Shahbaz Akhtar, M. (2020). Nitrite implications and its management strategies in aquaculture: a review. Reviews in Aquaculture, 12(2), 878–908. https://doi.org/10.1111/raq.12354
Comisión Nacional de Acuacultura y Pesca. (2018). Anuario estadístico de acuacultura y pesca 2018. https://nube.conapesca.gob.mx/sites/cona/dgppe/2018/ANUARIO_2018.pdf
Cristóbal-Acevedo, D., Álvarez-Sánchez, M. E., Hernández-Acosta, E., & Améndola-Massiotti, R. (2011). Concentración de nitrógeno en suelo por efecto de manejo orgánico y convencional. Terra Latinoamericana, 29(3), 325–332. https://bit.ly/3AX10ND
Di Rienzo, J., Casanoves, F., Balzarini, G., González, L., Tablada, M., & Robledo, C. (2017). InfoStat (versión 2017). Universidad Nacional de Córdoba.
Endut, A., Jusoh, A., Ali, N., Wan, Nik, W. B., & Hassanm, A. A. (2010). Study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology, 101(5), 1511–1517. https://doi.org/10.1016/j.biortech.2009.09.040
Espinosa Ramírez, M., Andrade Limas, E., Rivera Ortiz, P., & Romero Díaz, A. (2011). Degradación de suelos por actividades antrópicas en el norte de Tamaulipas, México. Papeles de Geografía, 53-54, 77–88. https://revistas.um.es/geografia/article/view/143451
Fassbender, W. H., & Bornemisza, E. (1987). Química de suelos, con énfasis en suelos de América Latina. Instituto Interamericano de Cooperación para la Agricultura.
Flores Márgez, J. P., Valero Córdoba, C., Osuna Ávila, P., Corral Díaz, B., Shukla, M. K., & Salazar Sosa, E. (2013). Textura del suelo y tipo de agua de riego en la disponibilidad de fósforo de estiércol bovino. Terra Latinoamericana, 31(3), 211–220. https://www.terralatinoamericana.org.mx/index.php/terra/article/view/287
Gama-Castro, J., Solleiro-Rebolledo, E., Flores-Román, D., Sedov, S., Cabadas-Báez, H., & Díaz-Ortega, J. (2007). Los tepetates y su dinámica sobre la degradación y el riesgo ambiental: el caso del Glacis de Buenavista, Morelos. Boletín de la Sociedad Geológica Mexicana, LIX(1), 133–145. https://doi.org/10.18268/bsgm2007v59n1a11
González Acosta, J. A. (2012). Uso y manejo de sedimentos provenientes de piscicultura como base para el manejo sostenible: revisión del tema. Revista Ciencia Animal, 1(5), 121–143. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1053&context=ca
González-Fragozo, H. E., Zabaleta-Solano, C., Devia-González, J., Moya-Salinas, Y., & Anfanador-Rico, O. (2020). Efecto del riego con agua residual tratada sobre la calidad microbiológica del suelo y pasto King Grass. Revista U.D.C.A. Actualidad & Divulgación Científica, 23(2), Article e1513. https://doi.org/10.31910/rudca.v23.n2.2020.1513
Govaerts, B., Barrera-Franco, M. G., Limón-Ortega, A., Muñoz-Jiménez, P., Sayre, K. D., & Deckers, J. (2008). Clasificación y evaluación edafológica de tres sitios experimentales del altiplano central de México. Tropicultura, 26(1), 2–9. http://www.tropicultura.org/text/v26n1/2.pdf
Guerrero-Ortiz, P., Quintero-Lizaola, R., Espinoza-Hernández, V., Benedicto-Valdés, G., & Sánchez-Colín, M. J. (2012). Respiración de CO2 como indicador de la actividad microbiana en abonos orgánicos de Lupinus. Terra Latinoamericana, 30(4), 355–362. https://www.terralatinoamericana.org.mx/index.php/terra/article/view/1091/1337
Instituto Nacional de Estadística Geografía e Informática. (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Ixtacuixtla de Mariano Matamoros, Tlaxcala. DocPlayer. https://bit.ly/3EGCe5m
Jackson, M. L. (1976). Análisis químico de suelos. Editorial Omega.
Landon, J. R. (1984). Booker tropical soil manual. Booker Agriculture International Limited.
Lockhart, K. M., King, A. M., & Harter, T. (2013). Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. Journal Contamination Hydrology, 151, 140–154. https://doi.org/10.1016/j.jconhyd.2013.05.008
López, D. M., & Estrada, M. H. (2015). Propiedades físicas, químicas y biológicas del suelo. Bioagrociencias, 8(1), 3–11.
Luna-Imbacuán, M. A., Campos-Bermúdez, F., & Medina-Gutiérrez, O. (2016). Evaluación de las aguas residuales del lavado de estanques multipropósito con cultivo de trucha arcoíris (Oncorhynchus mykiss). Ciencia & Tecnología Agropecuaria, 17(2), 191-202. https://revistacta.agrosavia.co/index.php/revista/article/view/488/388
Mangmang, J. S., Deaker, R., & Rogers, G. (2016). Response of cucumber seddlings fertilized with fish effluents to Azospirillum brasiliense. International Journal of Vegetable Science, 22(2), 129–140. https://doi.org/10.1080/19315260.2014.967433
Muñoz Villalobos, J. A., Macías Rodríguez, H., Delgado Ramírez, G., Rivera González, M., Inzunza Ibarra, A., & Jacobo Salcedo, M. del R. (2017). Niveles de nitrógeno y fósforo en maíz (Zea mayz L.) forrajero bajo riego con aguas residuales tratadas. Agrofaz, 17(2), 45–52.
Odoemena, K. I., Rowshon, K. M. D., & Hasfalina Binti, C. M. (2020). Advances in utilization of wastewater in agricultural practice: a technical note. Irrigation and Drainage, 69(1), 149–163. https://doi.org/10.1002/ird.2384
Oladimeji, S. A., Okomoda, V. T., Olufeagba, S. O., Solomon, S. G., Abol-Munafi, A. B., Alabi, K. I., Ikhwanuddin, M., Martins, C. O., Umaru, J., & Hassan, A. (2020). Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Science Nutrition, 8(5), 2307–2315. https://doi.org/10.1002/fsn3.1512
Omotade, I. F., Alatise, M. O., & Olanrewaju, O. O. (2019). Recycling of aquaculture wastewater using charcoal based constructed wetlands. International Journal Phytoremediation, 21(5), 399–404. https://doi.org/10.1080/15226514.2018.1537247
Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2016). El estado mundial de la pesca y la acuicultura. Contribución a la seguridad alimentaria y la nutrición para todos. https://www.fao.org/3/i5555s/i5555s.pdf
Porta, C. J., López-Acevedo, M., & Roquero, C. (2003). Edafología para la agricultura y el medio ambiente (3ª ed.). Ediciones Mundi-Prensa.
Rodríguez, F. H., & Rodríguez, A. J. (2011). Métodos de análisis de suelos y plantas. Editorial Trillas.
Rosero, J., Vélez, J., Burbano, H., & Ordóñez, H. (2019). Cuantificación de la respiración y biomasa microbiana en Andisoles del sur de Colombia. Agro Sur, 47(3), 15–25. https://doi.org/10.4206/agrosur.2019.v47n3-03
Secretaría de Economía. (2008). Norma oficial mexicana NMX-FF-109-SCFI-2007. Humus de lombriz (lombricomposta)-especificaciones y métodos de prueba. https://bit.ly/2Ba4BbB
Secretaría de Medio Ambiente y Recursos Naturales. (2002). Norma oficial mexicana NOM-021-SEMARNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf
Shifflett, S. D., Culbreth A., Hazel, D., Daniels, H., & Nichols, E. G. (2016). Coupling aquaculture with forest plantations for food, energy, and water resiliency. Science of the Total Environment, 571, 1262–1270. https://doi.org/10.1016/j.scitotenv.2016.07.161
Soto-Mora, E. S., Hernández-Vázquez, M., Luna-Zendejas, H. S., Ortiz-Ortiz, E., & García-Gallegos, G. E. (2016). Evaluación del contenido de materia orgánica en suelos agrícolas y su relación carbono/nitrógeno. Revista Iberoamericana de Ciencias, 3(5), 98–105. http://www.reibci.org/publicados/2016/oct/1800105.pdf
Turcios, A. E., & Papenbrock J. (2014). Sustainable treatment of aquaculture effluents-what can we learn from the past for the future? Sustainability, 6(2), 836–856. https://doi.org/10.3390/su6020836
Valenti, W. C., Kimpara, J. M., Preto, B. de L., & Moraes-Valenti, P. (2018). Indicators of sustainability to assess aquaculture systems. Ecological Indicators, 88, 402–413. https://doi.org/10.1016/j.ecolind.2017.12.068
Vargas Diaz, R. E., Galindo Pacheco, J. R., & Giraldo Henao, H. (2021). Análisis espacial de propiedades físicas del suelo de la Hoya del río Suárez, Boyacá-Santander (Colombia), utilizando componentes principales. Investigación Agraria, 23(1), 8–16. https://doi.org/10.18004/investig.agrar.2021.junio.2301657
Vázquez, A. A. (1997). Guía para interpretar el análisis químico del agua y suelo (2ª ed.). Universidad Autónoma Chapingo.
Villalobos-Reyes, S., & González-Pérez, E. (2016). Determinación de la relación pez planta en la producción de tomate (Lycopersicum sculentum L.) en sistema de acuaponía. Revista Mexicana de Ciencias Agrícolas, 7(5), 983–992. https://doi.org/10.29312/remexca.v7i5.225
Xie, Y., Wang, Z., Guo, X., Lakthan, S., Chen, S., Xiao, Z., & Alhaj Hamoud, Y. (2019). Effects of different irrigation treatments on aquaculture purification and soil desalination of paddy fields. Water, 11(7), Article 1424. https://doi.org/10.3390/w11071424
Yuvanatemiya, V., & Boyd, C. E. (2006). Physical and chemical changes in aquaculture pond bottom soil resulting from sediment removal. Aquacultural Engineering, 35(2), 199–205. https://doi.org/10.1016/j.aquaeng.2006.02.001
Zhang, Q., Achal, V., Xu, Y., & Xiang, W. -N. (2014). Aquaculture wastewater quality improvement by water spinach (Ipomoe aquatica Forsskal) floating bed and ecological benefit assessment in ecological agriculture district. Aquacultural Engineering, 60, 48–55. https://doi.org/10.1016/j.aquaeng.2014.04.002
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aldo Iram Leal-Mendoza, Elizabeth García-Gallegos, Oscar G. Vázquez-Cuecuecha, Elizabeth Hernández-Acosta
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).