Substrate and spatial planting pattern on the productivity of clonal mini gardens of Tectona grandis Linn. F
DOI:
https://doi.org/10.15517/am.v34i2.51977Keywords:
clonal forestry, vegetative propagation, tree improvement, mini cuttings, protected environmentAbstract
Introduction. Tectona grandis is the species with the largest planted area in Costa Rica, due to the high prices in the international market. The production of plants for reforestation has been technified in the country and is currently being developed based on protected environment technologies, which increase productivity, reduce operating costs, and offer planting material throughout the year. Objective. To evaluate the effect of two substrates and five planting densities on the productivity of clonal mini-gardens of Tectona grandis in a protected environment. Materials and methods. Four readily available inert substrates were characterized by granulometry and moisture retention analysis, from which stone dust was selected as the optimum substrate. An experimental trial with a 2x5 factorial design was established in San Carlos, Costa Rica to evaluate two substrates (stone dust alone and with 25 % charcoal) and five planting densities (cm) of 10x10, 10x5, 7x5, 10x10 with two plants per hole and 10x10 with one plant in the middle. Each density had four clones as a replicate effect. The trial was evaluated during five continuous production cycles from January to September 2021. Results. The use of stone dust as substrate, without charcoal, recorded the highest productivity at a lower cost. The spatial planting arrangement of 10x10 cm with one plant in the middle (n=145 plants/m2), recorded the highest shoot production per mother plant (1.16). The 7x5 cm arrangement increased productivity by up to 206 shoots m2/month. Conclusion. The change in planting density of the clonal mini-garden, in a first stage to 10x10cm with an additional plant in the center, resulted in a high impact on productivity (74 %), greater efficiency in the use of space, and a better gradual change in the operating system.
Downloads
References
Abreu Rezende, F., Hardt Ferreira dos Santos, V. A., Branco de Freitas Maia, C. M., & Moura Morales, M. (2016). Biochar na composição de substratos para a produção de mudas de teca. Pesquisa Agropecuaria Brasileira, 51(9), 1449–1456. https://doi.org/10.1590/S0100-204X2016000900043
Alvarado, A., & Raigosa, J. (2012). Nutrición y fertilización forestal en regiones tropicales. Agronomía Costarricense, 36(1), 113–115.
Arcanjo do Nascimento, D., Peres Filho, O., Guimarães Favare, L., Dias Souza, M., dos Santos, A., & Gomes Silva Junior, J. (2020). Inicial development of Tectona grandis L.f under nutricional restriction. Revista FLORESTA, 50(2), 1223–1230. http://doi.org/10.5380/rf.v50i2.62242
Badilla, Y., Xavier, A., & Murillo Gamboa, O. (2017). Storage time effect on mini-cuttings rooting in Tectona grandis Linn F. clones. Revista Árvore, 41(3), Article e410303. https://doi.org/10.1590/1806-90882017000300003
Badilla Valverde, Y. (2014). Clonagem de Tectona grandis Linn F. por estaquia e miniestaquia [Tese de mestrado, Universidade Federal de Viçosa]. Locus Repositório Institucional da Universidade Federal de Viçosa. http://locus.ufv.br/handle/123456789/3158
Badilla-Valverde, Y., & Murillo-Gamboa, O. (2022). Selección clonal de Tectona grandis L. f. para el Pacífico seco de Costa Rica. Uniciencia, 36(1), 1–15. https://doi.org/10.15359/RU.36-1.19
Bonnin, S. M., Faustino, L. I., Alvarez, J. A., & Graciano, C. (2020). ¿La combinación de clones posee alguna ventaja sobre los sistemas monoclonales? Revista de La Facultad de Agronomía, La Plata, 119(2), Artículo 051. https://doi.org/10.24215/16699513E051
Calderón-Ureña, F., Esquivel-Segura, E., & Acevedo-Tapia, M. (2019). Manejo nutricional y de riego en minijardines clonales de Tectona grandis (Linn. F) en la zona sur de Costa Rica. Revista Forestal Mesoamericana Kurú, 16(39), 43–52. https://doi.org/10.18845/rfmk.v16i39.4427
Camel, V., Galeano, E., & Carrer, H. (2017). Red de coexpresión de 320 genes de Tectona grandis relacionados con procesos de estrés abiótico y xilogénesis. TIP, 20(2), 5–14. https://doi.org/10.1016/j.recqb.2017.04.001
Chaves Souza, C., Xavier, A., Palha Leite, F., Campos Santana, R., & Nogueira de Paiva, H. (2014). Densidade de minicepas em minijardim clonal na produção de mudas de eucalipto. Pesquisa Florestal Brasileira, 34(77), 49–56. https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/512
de Camino Velozo, R., Villalobos, R., & Morales Aymerich, J. P. (2016). Costa Rica case study. Prepared for FAO as part of the State of the World’s Forests 2016 (SOFO). Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-C0180e.pdf
Gomes da Cunha, T. Q., Chaveiro Santos, A., Novaes, E., Santiago Hansted, A. L., Minoru Yamaji, F., & Sette Jr, C. R. (2021). Eucalyptus expansion in Brazil: Energy yield in new forest frontiers. Biomass and Bioenergy, 144, Article 105900. https://doi.org/10.1016/J.BIOMBIOE.2020.105900
Gruda, N., Gianquinto, Tüzel, Y., & Savvas, D. (2016). Culture soil-less (3rd ed.). CRC Press, Taylor & Francis Group.
Gruda, N., Qaryouti, M. ., & Leonardi, C. (2013). Growing media. In Duffy, R (Ed.), Good agricultural practices for greenhouse vegetable crops. Principles for Mediterranean climate areas (pp. 271–302). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/i3284e/i3284e.pdf
Hine, A., Rojas, A., Suarez, L., Murillo, O., & Espinoza, M. (2019). Optimization of pollen germination in Tectona grandis (Teak) for breeding programs. Forests, 10(10), Article 908. https://doi.org/10.3390/f10100908
Holdridge, L. R. (1982). Ecología basada en zonas de vida (Tra. H. Jiménez Saa). Instituto Interamericano de Cooperación para la Agricultura. https://bit.ly/3lhGxyd
Instituto Meteorológico Nacional. (s.f. a). Clima en Costa Rica y variabilidad climática. Recuperado el 08 de mayo del 2020, de https://www.imn.ac.cr/web/imn/clima-en-costa-rica
Instituto Meteorológico Nacional. (s.f. b). Condiciones actuales del tiempo. Estación Automática del TEC, Sede Santa Clara, San Carlos, Alajuela. Recuperado el 30 de agosto del 2021, de https://www.imn.ac.cr/especial/estacionStaClara.html
Koller, W., & Jan Walotek, P. (2015). Global Teak trade in the aftermath of Myanmar’s Log export Ban. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/i5023e/i5023e.pdf
Meza Picado, V., Alfaro Jiménez, K., Bedoya Arrieta, R., Romero Mora, M., Valerio Madrigal, A., & Montenegro Salas, P. (2019). Reforestación comercial en Costa Rica: regiones Huetar Atlántica, Huetar Norte y Chorotega (1ª ed.). Universidad Nacional. https://www.fonafifo.go.cr/media/2976/reforestacion_comercial.pdf
Monsalve-Paredes, M., & Bello-Alarcón, A. (2020). Evaluación antimicrobiana de extractos obtenidos de los residuos de la corteza de Teca (Tectona grandis l.f). CIENCIA UNEMI, 13(32), 63–68. https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp63-68p
Monteuuis, O., & Goh, D. (2018). Teak clonal forestry. Teaknet Bulletin, 11(2), 2–12. https://agritrop.cirad.fr/587824/1/OM&DGTeaknet 11-2018.pdf
Morales-Maldonado, E. R., & Casanova-Lugo, F. (2015). Mezclas de sustratos orgánicos e inorgánicos, tamaño de partícula y proporción. Agronomía Mesoamericana, 26(2), 365–372. https://doi.org/10.15517/am.v26i2.19331
Murillo, O., & Guevara, V. (2013). Estado de los recursos genéticos forestales de Costa Rica 2012. Organización de las Nacionaes Unidas para la Alimentación y la Agricultura. https://www.fao.org/3/be886s/be886s.pdf
Murillo, O., de Resende, M. D. V., Badilla, Y., & Gamboa, J. P. (2019). Genotype by environment interaction and teak (Tectona grandis L.) selection in Costa Rica. Silvae Genetica, 68, 116–121. https://doi.org/10.2478/sg-2019-0020
Murillo Gamboa, O., Badilla Valverde, Y., Villalobos, M., & Rojas Parajeles, F. (2013). Optimización de la tecnología de propagación vegetativa in vivo y plantación de teca y pilón (Informe Final de Proyectos de Investigación). Repositorio del Instituto Tecnológico de Costa Rica. https://bit.ly/40FNIQM
Murillo Gamboa, O., Espitia Camacho, M., & Castillo Pinedo, C. (2012). Fuentes semilleras para la producción forestal (1ª ed.). Editorial Domar S.A.S.
Murillo-Gamboa, O., Badilla-Valverde, Y., & Barboza-Flores, S. (2018). Costos de producción en ambiente protegido de clones para reforestación. Revista Forestal Mesoamericana Kurú, 15(37), 15–24. https://doi.org/10.18845/rfmk.v15i37.3599
Nelson, S. D., Nelson, M. D., Nelson, D. S., Johnston, D., & Nelson, S. C. (2021, March 30th). Plant substrate growing medium (Patent US10959384B2). Veritas Substrates LLC. https://patents.google.com/patent/US10959384B2/en
Paniagua-Hernández, L. D., Arias-Gamboa, L. M., Alpízar-Naranjo, A., Castillo-Umaña, M. Á., Camacho-Cascante, M. I., Padilla-Fallas, J. E., & Campos-Aguilar, M. (2020). Efecto de la densidad de siembra y edad de rebrote en la producción y composición bromatológica de Tithonia diversifolia (Hemsl.) A. Gray. Pastos y Forrajes, 43(4), 275–283. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=2202
Picken, P., Reinikainen, O., & Herranen, M. (2008). Horticultural peat raw material and its chemical and physico-chemical characteristics in Western Finland and Western Estonia. Acta Horticulturae, 779, 415–422. https://doi.org/10.17660/ACTAHORTIC.2008.779.52
Quesada Roldán, G., & Marin Thiele, F. (2014). Una metodología para la evaluación de sustratos para agricultura protegida. Ministerio de Agricultura y Ganadería de Costa Rica. http://www.mag.go.cr/bibliotecavirtual/AV-1599.pdf
Rojas Parajeles, F., & Abdelnour Esquivel, A. (2012). Brotación in vitro de yemas de teca (Tectona grandis L. f.). Tecnología en Marcha, 25(5), 67–72. https://doi.org/10.18845/tm.v25i5.475
Sarria, Y. V. (2022). Evaluación de tres medios de cultivo en enraizamiento de caña de azúcar (Saccharum officinarum) por sistema de inmersión temporal [Tesis de licenciatura, Universidad Nacional Abierta y a Distancia]. Repositorio Institucional de la Universidad Nacional Abierta y a Distancia. https://repository.unad.edu.co/handle/10596/47869
Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry - A review. European Journal of Horticultural Science, 83(5), 280–293. https://doi.org/10.17660/eJHS.2018/83.5.2
Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333–347. https://doi.org/10.1016/j.sajb.2019.11.015
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82. https://doi.org/10.1016/S0065-2113(10)05002-9
Soto-Bravo, F., Araya-Cubero, E. A., & Echandi-Gurdian, C. (2020). Efecto de la densidad de siembra y volumen de sustrato sobre parámetros de riego y rendimiento de chile dulce ‘dulcitico’, en hidroponía bajo invernadero. Agronomía Costarricense, 44(1), 43–64. https://doi.org/10.15517/RAC.V44I1.40001
Tamarit-Urias, J. C., De los Santos-Posadas, H. M., Aldrete, A., Valdez-Lazalde, J. R., Ramírez-Maldonado, H., & Guerra-De la Cruz, V. (2019). Sistema de crecimiento y rendimiento maderable para plantaciones de teca (Tectona grandis L. f.) en Campeche, México. Madera y Bosques, 25(3), Artículo e2531908. https://doi.org/10.21829/myb.2019.2531908
Trujillo Sánchez, M. (2021). Densidad de siembra en la producción y calidad de ají escabeche (Capsicum baccatum L. var. pendulum), en cañete. Universidad Nacional Agraria La Molina.
Ugalde Alfaro, S. (2021). Balanza Comercial y Tendencias de las Exportaciones e Importaciones de madera y muebles de madera en Costa Rica. Estadísticas 2020. Oficina Nacional Forestal. https://bit.ly/3lh3Yrl
Xavier, A., Wendling, I., & da Silva, R. L. (2009). Silvicultura clonal. Princípios e técnicas (2ª ed.). Editora Universidade Federal de Viçosa.
Xie, L., Lehvävirta, S., & Valkonen, J. P. T. (2020). Case study: Planting methods and beneficial substrate microbes effect on the growth of vegetated roof plants in Finland. Urban Forestry and Urban Greening, 53, Article 126722. https://doi.org/10.1016/j.ufug.2020.126722
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Arantxa Rodríguez-Solís, Yorleny Badilla-Valverde, Olman Murillo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).