Defoliation of sugarcane (Saccharum officinarum) in the Chontalpa, Tabasco, México
DOI:
https://doi.org/10.15517/am.2024.53608Keywords:
defoliation, yield, quality, artificial defoliationAbstract
Introduction. Defoliation studies on sugarcane in Mexico are scarce, and it is unknown at what age of the plant and in which season of the year it should be carried out. Objective. To evaluate the effect of artificial defoliation in sugarcane at different stages of growth and its response on quality and yield parameters. Materials and methods. The experiment was conducted during the 2020-2021 harvest between the months of April and May, in a plot located in a ratoon of the cultivar COLPOSCTMEX 06-039, within the supply area of the Ingenio Presidente Benito Juárez in the Chontalpa region, Tabasco. A completely randomized block design was used, where the defoliation treatments consisted of removing the entire leaves of the stem until leaving the +5 leaf (H5). Defoliation treatments were applied at 8, 9, and 10 months of crop age, plus a control without defoliation, with five replicates per treatment. Growth parameters evaluated were plant height and diameter, number of stalks, and leaf area index (IAF) and normalized difference vegetation index (NDVI). At harvest, °Brix and sugarcane yields of sugarcane were measured. Results. It was found that growth and quality parameters were reduced by total defoliation treatments. Treatment 2 showed the highest values of plant height and diameter, lower NDVI, and stalk yield at harvest, and defoliation affected the IAF. °Brix were not affected by different defoliation treatments. Conclusion. Defoliation at nine months of age increased agricultural yield and did not affect juice quality.
Downloads
References
Calderón Amariles, V. L. (2020). Productividad de la caña de azúcar (Saccharum officinarum L. Var. CC 01-1940) mediante el deshoje artificial en Pradera Valle del cauca, Colombia [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio de la Universidad Nacional de Colombia. https://bit.ly/3iFPjVU
Centro de Investigación Científica y de Educación Superior de Ensenada. (2021). Base de datos climatológica nacional (sistema CICLOM). http://clicom-mex.cicese.mx/mapa.html
Fortes, C., Ocheuze Trivelin, P. C., & Vitti, A. C. (2012). Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, 42, 189–198. https://doi.org/10.1016/j.biombioe.2012.03.011
Gao, X. -X., Liu, S. -C., Zhang, Y. -B., Guo, J. -W., Fang, Z. -C., Dao, J. -M., Fan, X., & Deng, J. (2017). Differential Analysis of Endogenous Hormone Levels and Natural Defoliation Traits During Sugarcane (Saccharum spp.) Maturation. Sugar Tech, 19, 41–50. https://doi.org/10.1007/s12355-016-0441-2
Gutiérrez-Miceli, F. A., Morales-Torres, R., Espinosa-Castañeda, J. Y., Rincón-Rosales, R., Mentes-Molina, J., Oliva-Llaven, M. A., & Dendooven, L. (2004). Effects of partial defoliation on sucrose accumulation, enzyme activity and agronomic parameters in sugarcane (Saccharum spp.). Journal of Agronomy and Crop Science, 190(4), 256–261. https://doi.org/10.1111/j.1439-037X.2004.00103.x
Huang, Y., Shang, H., Xu, Y., Jiang, H., Xu, S., & Zhang, M. (2018). Quantitative evaluation of variation in defoliation traits among sugarcane genotypes. Plos one, 13(5), Article e0196071. https://doi.org/10.1371/journal.pone.0196071
Iqbal, N., Masood, A., & Khan, N. A. (2012). Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica, 50(2), 161–170. https://doi.org/10.1007/s11099-012-0029-3
Islam, M. J., Rahman, M. A., Uddin, M. J., Hossain, M. I., Al-Amin, H. M., Razzak, M. A., & Reza, M. (2016). Effects of artificial defoliation on yield and quality of sugarcane. Eco-friendly Agriculture Journal, 9(7), 51–54.
Izquierdo Hernández, J. (2021). Análisis del crecimiento de cultivares de caña de azúcar (Saccharum officinarum) en el Ingenio Santa Rosalía de la Chontalpa, Tabasco [Tesis de doctorado, Colegio de Postgraduados]. Colegio de Postgraduados Digital. https://bit.ly/3iNiypF
Jain, R., Kulshreshtha, N., Shahi, H. N., Solomon, S., & Chandra, A. (2010). Effect of leaf stripping on cane and sugar yield in sugarcane. Sugar Tech, 12, 70–71. https://doi.org/10.1007/s12355-010-0014-8
Lázaro Sánchez, G. del R., Bautista, F., Goguitchaichvili, A., López-Noverola, U. and Sánchez-Hernández, R. (2021). Efecto de la quema agrícola en un vertisol de Tabasco México: fosforo, pH y conductividad eléctrica. Tropical and Subtropical Agroecosystems, 24(1), Artículo 26. http://dx.doi.org/10.56369/tsaes.3569
Luo, J., Zhang, H., Deng, Z. -H., Xu, L. -P., Xu, L. -N., Yuan, Z. -N., & Que, Y. -X. (2013). Analysis of yield and quality traits in sugarcane varieties (lines) with GGE-Biplot. Acta Agronomica Sinica, 39(1), 142–152. https://doi.org/10.3724/SP.J.1006.2013.00142
Miah, M. A. S., & Sarker, M. A. A. (1982). Effect of artificial defoliation and stalks binding on the cane quality. Bangladesh Journal of Sugarcane, 4, 51–53.
Montenegro-Ballestero, J., & Chaves-Solera, M. (2021). Efecto de la quema en caña de azúcar sobre el carbono de un Andisol. Alcances Tecnológicos, 14(1), 31–48. https://doi.org/10.35486/at.v0i0.185
Ortiz Laurel, H., Salgado García, S., Castelán Estrada, M., & Córdova Sánchez, S. (2012). Perspectivas de la cosecha de la caña de azúcar cruda en México. Revista Mexicana de Ciencias Agrícolas, 3(Esp. 4), 767–773.
Pammenter, N. W., & Allison, J. C. S. (2002). Effects of treatments potentially influencing the supply of assimilate on its partitioning in sugarcane. Journal of Experimental Botany, 53(366), 123–129. https://doi.org/10.1093/jexbot/53.366.123
Pinheiro Lisboa, I., Melo Damian, J., Cherubin, M. R., Silva Barros, P. P., Fiorio, P. R., Cerri, C. C., & Pellegrino Cerri, C. E. (2018). Prediction of sugarcane yield based on NDVI and concentration of leaf-tissue nutrients in fields managed with straw removal. Agronomy, 8(9), Article 196. https://doi.org/10.3390/agronomy8090196
Salgado García, S., Izquierdo Hernández, J., Lagunes Espinoza, L. del C., Palma López, D. J., Córdova Sánchez, S., Ortiz Laurel, H., & Castelán Estrada, M. (2017). Consumo de nitrógeno por cultivares de caña de azúcar en Tabasco, México. Revista de la Facultad de Ciencias Agrarias de la Universidad Nacional del Cuyo, 49(1), 45–59. https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/3102
Salgado García, S., Lagunes Espinoza, L. D. C., Núñez Escobar, R., Ortiz García, C. F., Bucio Alánis, L., & Aranda Ibáñez, E. M. (2013). Caña de azúcar: Producción sustentable (No. 633,61 C121ca). Colegio de Postgraduados.
Salgado Velázquez, S. (2019). Dinámica de crecimiento de variedades de caña de azúcar en diferentes condiciones edáficas de la Chontalpa, Tabasco [Tesis de maestría, Colegio de Postgraduados]. Colegio de Postgraduados Digital. https://bit.ly/3IUp6NL
Statistical Analysis System. (2009). SAS/STAT® 9.2 User’s guide (2nd ed.). SAS Institute Inc. https://bit.ly/3XkrzFE
Tariku, K. (2020). Effect of percent and stage of leaf defoliation on the quality of sugarcane, at Arjo-Dedessa Sugar Factory, in Western Ethiopia. International Journal of Environmental & Agriculture Research, 6(6), 7–13. https://dx.doi.org/10.5281/zenodo.3923267
Vasantha, S., Gupta C., & Shekinah D. E. (2014). Physiological studies on tiller production and its senescence in sugarcane-response comparison between plant and ratoon crops. Indian Journal of Agricultural Sciences, 84(1), 24–27. https://epubs.icar.org.in/index.php/IJAgS/article/view/37145
Welles, J. M., & Cohen, S. (1996). Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany, 47(9), 1335–1342. https://doi.org/10.1093/jxb/47.9.1335
Xie, L., Wang, J., Cheng, S., Zeng, B., & Yang, Z. (2020). Optimisation and dynamic simulation of a conveying and top breaking system for whole-stalk sugarcane harvesters. Biosystems Engineering, 197, 156–169. https://doi.org/10.1016/j.biosystemseng.2020.06.017
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fabiola Olvera-Rincón, Sergio Salgado-Velázquez, Samuel Córdova Sánchez, David Jesús Palma-López, Antonio López-Castañeda, Raúl Castañeda-Ceja
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).