Pelletized Mucuna pruriens (L) DC. and Trichoderma harzianum Rifai applied on tomato (Solanum lycopersicum L.) as an amendment and biocontrol agent
DOI:
https://doi.org/10.15517/am.2024.55389Keywords:
soil, organic material, yield, Solanum lycopersicum, green manuresAbstract
Introduction. In organic agriculture, green manures and biocontrols are used as methods for fertilization and pest control. However, their independent application of these inputs increases production costs. A pelletized formulation is proposed to allow simultaneous application of both inputs. Objective. To evaluate the effect of pelletized Mucuna pruriens (L.) DC. inoculated with Trichoderma harzianum Rifai on nutritional intake, agricultural yield, and regulation of Fusarium oxysporum f. sp. lycopersici in tomato (Solanum lycopersicum L.). Materials and methods. The experiment was carried out in 2022 in Tablón del Guarco, Cartago, Costa Rica, using a randomized complete block design with seven treatments and seven repetitions. Two formulations (A and B) of biopellet (M. pruriens + zeolite + T. harzianum) were applied at three dosages (15, 30, 50 g/plant). T. harzianum was added at a rate of 5 g/kg of biopellet. Applications of each treatment were conducted every 15 days for a total of eight applications. At the time of planting, F. oxysporum was inoculated (100 mL/plant with a concentration of 1 x 103 CFU). Results. The application of biopellet achieved a yield and weight of high-quality fruits similar to the commercial control. There were no significant differences among treatments for second and third-quality fruits. The technical efficiency in controlling F. oxysporum reached 97.6 % with biopellet. This amendment increased the levels of Carbon (C), Nitrogen (N), and organic matter in the soil and affected the nutritional content of the plant foliage in the first 60 days after sowing. Conclusions. The biopellet has the capacity to make chemical and organic contributions to the soil, which improves the nutrition of the tomato crop. It could be also a biocontrol alternative against F. oxysporum and compatible with T. harzianum.
Downloads
References
Accuweather (s.f.). Registro de temperatura en Tablón del Guarco, Cartago, Costa Rica. Periodo enero-junio, 2022. Recuperado el 4 de julio del 2022, de https://www.accuweather.com/es/cr/tablon/112482/january-weather/112482?year=2022
Aguilar Brenes, E. (2021). Uso y producción de Mucuna (Stizolobium spp) y Canavalia (Canavalia ensiformis) en terrenos en descanso. Instituto Nacional de Innovación y Transferencia Agropecuaria. http://www.inta.go.cr/images/documentos/manuales/Uso-Produccion-Mucuna-y-Canavalia-Terreno-Descanso.pdf
Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press. https://doi.org/10.1016/C2009-0-02037-6
Alcántar González, G., Trejo Téllez, L. I., & Gómez Merino, F. C. (2016). Nutrición de cultivos (2da ed.). Colegio de Posgraduados.
Barrientos Blanco, J. A. (2010). Producción de peletizado a partir de forraje de Soya (Glycine max. L. Merr. var. GIGRAS 06) para la alimentación en bovinos de carne y leche [Tesis de bachillerato, Instituto Tecnológico de Costa Rica]. Repositorio TEC. https://hdl.handle.net/2238/3311
Blaesing, D., Murray, A., Shultz, M., & Stewart, M. (2006). Nutrient management for high soluble solids production in Australia processing tomatoes. Acta Horticulturae, 724, 75–83. https://doi.org/10.17660/ActaHortic.2006.724.8
Brunner, B., Beaver, J., & Flores, L. (2011). Mucuna pruriens. Estación Experimental Agrícola de Lajas. https://www.yumpu.com/es/document/read/9154627/mucuna-pruriens-agricultura-organica-puerto-rico
Bunch, R. (2012). Restoring the soil. A guide for using green manure/cover crops to improve the food security of smallholder farmers. Canadian Foodgrains Bank.
Burri, N. M., Weatherl, R., Moeck, C., & Schirmer, M. (2019). A review of threats to groundwater quality in the Anthropocene. Science of The Total Environment, 684, 136–154. https://doi.org/10.1016/j.scitotenv.2019.05.236
Cai, F., Chen, W., Wei, Z., Pang, G., Li, R., Ran, W., & Shen, Q. (2015). Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant and Soil, 388, 337–350. https://doi.org/10.1007/s11104-014-2326-z
Carrillo Paniagua, T. (2015). Caracterización de Pellets con fines energéticos elaborados a partir de residuos forestales [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio Escuela de Ingeniería en Biosistemas. https://www.ingbiosistemas.ucr.ac.cr/wp-content/uploads/2015/08/17caracterizaciondepellets.pdf
Castro-Rincón, E., Mojica-Rodríguez, J. E., Carulla-Fornaguera, J. E., & Lascano-Aguilar, C. E. (2018). Evaluación de leguminosas como abono verde en cultivos forrajeros para ganadería en el Caribe seco colombiano. Agronomía Mesoamericana, 29(3), 597–617. https://doi.org/10.15517/ma.v29i3.32350
Delgado Maroto, L. D., & Bermúdez Cardona, M. B. (2021). Inducción de resistencia en tomate (Solanum lycopesicum L.) y antagonismo de Trichoderma viride contra Fusarium oxysporum. Acta Agronomica, 70(1), 101–106. https://doi.org/10.15446/acag.v70n1.78357
Delpiano, C. A., Prieto, I., Loayza, A. P., Carvajal, D. E., & Squeo, F. A. (2020). Different responses of leaf and root traits to changes in soil nutrient availability do not converge into a community-level plant economics spectrum. Plant and Soil, 450, 463–478. https://doi.org/10.1007/s11104-020-04515-2
de Souza Bido G., da Silva, H. A., da Silva Coelho Bortolo, T., Rodrigues Maldonado, M.R., Marchiosi, R., Dantas dos Santos, W., & Ferrarese-Filho, O. (2018). Comparative effects of L-DOPA and velvet bean seed extract on soybean lignification. Plant Signaling & Behaviour, 13(4), Article e1451705. https://doi.org/10.1080/15592324.2018.1451705
Di Rienzo, J. A., Casanoves, F., Balzarini, G., González, L., & Tablada, M. (2020). InfoStat versión 2020. https://www.infostat.com.ar/
Elfstrand, S., Båth, B., & Mårtensson, A. (2007). Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Applied Soil Ecology, 36(1), 70–82. https://doi.org/10.1016/j.apsoil.2006.11.001
Gatsios, A., Ntatsi, G., Celi, L., Said-Pullicino, D., Tampakaki, A., & Savvas, D. (2021). Legume-based mobile green manure can increase soil nitrogen availability and yield of organic greenhouse tomatoes. Plants, 10(11), Article 2419. https://doi.org/10.3390/plants10112419
Geisseler, D., Aegerter, B. J., Miyao, E. M., Turini, T., & Cahn, M. D. (2020). Nitrogen in soil and subsurface drip-irrigated processing tomato plants (Solanum lycopersicum L.) as affected by fertilization level. Scientia Horticulturae, 261, Article 108999. https://doi.org/10.1016/j.scienta.2019.108999
Gonzalez-Estrada, A., & Camacho Amador, M. (2017). Emisión de gases de efecto invernadero, de la fertilización nitrogenada en México. Revista Mexicana de Ciencias Agrícolas, 8(8), 1733-1745. https://doi.org/10.29312/remexca.v8i8.698
Infante, D., Martínez, B. Gonzáles, N., & Reyes, Y. (2009). Mecanismos de acción de Trichoderma, frente a hongos fitopatógenos. Revista de Protección Vegetal, 24(1), 14–21.
Kaniszewski, S., Babik, I., & Babik, J. (2019). New pelleted plant-based fertilizers for sustainable onion production. Universal Journal of Agricultural Research, 7(6), 210–220. https://doi.org/10.13189/ujar.2019.070603
Köninger, J., Lugato, E., Panagos, P., Kochupillai, M., Orgiazzi, A., & Briones, M. J. I. (2021). Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agricultural Systems, 194, Article 103251. https://doi.org/10.1016/j.agsy.2021.103251
Lara Mantilla, C., Villalba Anayz, M., & Oviedo Zumaqué, L. E. (2007). Bacterias fijadoras asimbióticas de nitrógeno de las zonas agrícolas de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6–14. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/711
Li, X., Li, B., & Tong, Q. (2020). The effect of drying temperature on nitrogen loss and pathogen removal in laying hen manure. Sustainability, 12(1), Article 403. https://doi.org/10.3390/su12010403
Liu, Z., Howe, J., Wang, X., Liang, X., & Runge, T. (2019). Use of dry dairy manure pellets as nutrient source for tomato (Solanum lycopersicum var. cerasiforme) growth in soilless media. Sustainability, 11(3), Article 811. https://doi.org/10.3390/su11030811
López Marín, L. (2017). Manual técnico del cultivo de tomate (Solanum lycopersicum). Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria. https://www.mag.go.cr/bibliotecavirtual/F01-10921.pdf
Meléndez, G., & Molina, E. (2002). Tablas de interpretación de análisis foliares en cultivos. Centro de Investigaciones Agronómicas, Universidad de Costa Rica. http://www.cia.ucr.ac.cr/sites/default/files/2021-09/05%20Tablas%20Interpretaci%C3%B3n%20An%C3%A1lisis%20Foliar.pdf
Navarro-Pedreño, J., Almendro-Candel, M. B., & Zorpas, A. A. (2021). The increase of soil organic matter reduces global warming, myth or reality? Sci, 3(1), Article 18. https://doi.org/10.3390/sci3010018
Onica, B. -H., Vidican, R., Sandor, V., Brad, T., & Sandor, M. (2017). Priming effect induced by the use of different fertilizers on soil functional diversity. Bulletin of University of Agricultural Science and Veterinary Medicine series Agriculture, 74(2), 107–115. https://journals.usamvcluj.ro/index.php/agriculture/article/view/12774
Organo, N. D., Granada, S. M. J. M, Pineda, H. G. S, Sandro, J. M., Nguyen, V. H., & Gummert, M. (2022). Assessing the potential of a Trichoderma-based compost activator to hasten the decomposition of incorporated rice straw. Scientific Reports, 12, Article 448. https://doi.org/10.1038/s41598-021-03828-1
Osei, K., Gowen, S. R, Pembroke, B., Brandenburg, R. L., & Jordan, D. L. (2010). Potential of leguminous cover crops in management of a mixed population of root-knot nematodes (Meloidogyne spp.). Journal of Nematology, 42(3), 173–178. https://journals.flvc.org/jon/article/view/78271
Sanclemente Reyes, O. E, Prager Mosquera, M., & Beltrán Acevedo, L. R. (2013). Aporte de Nitrógeno al suelo por Mucuna pruriens y su efecto sobre sobre el rendimiento de maíz dulce (Zea mayz L.). Revista de Investigación Agraria y Ambiental, 4(2), 149–155. https://doi.org/10.22490/21456453.978
Sanclemente-Reyes, O. E., & Patiño-Torres, O. C. (2015). Efecto de la Mucuna pruriens como abono verde y cobertura, sobre algunas propiedades físicas del suelo. Entramado, 11(1), 206–211.
Stout, B., Rattan, L., & Monger, C. (2016). Carbon capture and sequestration: The roles of agriculture and soils. International Journal of Agricultural and Biological Engineering, 9(1), 1–8. https://doi.org/10.3965/j.ijabe.20160901.2280
Soto Rojas, N. J. (2017). Generación de pellets y compost a partir de residuos agrícolas [Tesis de pregrado, Universidad Técnica Federico Santa María]. Repositorio Peumo Digital USM. https://repositorio.usm.cl/bitstream/handle/11673/22658/3560900231641UTFSM.pdf?sequence=1&isAllowed=y
Tei, F., Benincasa, P., & Guiducci, M. (2002). Critical nitrogen concentration in processing tomato. European Journal of Agronomy, 18(1–2), 45–55. https://doi.org/10.1016/S1161-0301(02)00096-5
Vargas-Inciarte, L., Fuenmayor-Arrieta. Y., Luzardo-Méndez, M., Da Costa-Jardin, M., Vera, A., Carmona, D., Homen-Pereira, M., Da Costa-Jardin, P., & San-Blas, E. (2019). Use of different Trichoderma species in cherry type tomatoes (Solanum lycopersicum L.) against Fusarium oxysporum wilt in tropical greenhouses. Agronomía Costarricense, 43(1), 85–100. https://doi.org/10.15517/rac.v43i1.35671
Yan, J., Manelski, R., Vasilas, B., & Jin, Y. (2018). Mobile Colloidal Organic Carbon: An Underestimated Carbon Pool in Global Carbon Cycles? Frontiers in Environmental Science, 6, Article 148. https://doi.org/10.3389/fenvs.2018.00148
Zhang, H. (2013). Cause and Effects of Soil Acidity. Oklahoma Cooperative Extension Service. https://hdl.handle.net/11244/317947.2
Zhan, Y., Chang, Y., Tao, Y., Zhang, H., Lin, Y., Deng, J., Ma, T., Ding, G., Wei, Y., & Li, J. (2023). Insight into the dynamic microbial community and core bacteria in composting from different sources by advanced bioinformatics methods. Environmental Science and Pollution Research, 30, 8956–8966. https://doi.org/10.1007/s11356-022-20388-7
Zúñiga Orozco, A., Montero Jara, K., & Peña Cordero, W. (2020). Análisis de la eficiencia de la fertilización mediante el uso de Zeolita natural y Mucuna pruriens en el cultivo de arroz (Oryza sativa L) bajo condiciones controladas en microparcelas situadas en Parrita Puntarenas Costa Rica. Repertorio Científico, 23(2), 23–36. https://doi.org/10.22458/rc.v23i2.2985
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Arnaldo Martínez-Alfaro, Andrés Zuñiga-Orozco
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).