Biological potential of Beauveria spp. for the control of Anthonomus eugenii in sweet pepper
DOI:
https://doi.org/10.15517/am.2024.59755Keywords:
entomopathogen, biopesticide, parasitism, biocontrollerAbstract
Introduction. Anthonomus eugenii causes considerable economic losses in sweet pepper (Capsicum annuum). Chemical control is ineffective; therefore, it is essential to explore other management alternatives. Objective. To determine the potential of Beauveria spp. strains for the biological control of Anthonomus eugenii in sweet pepper under greenhouse conditions. Materials and methods. The research was conducted between May and August 2023 at the Fabio Baudrit Moreno Agricultural Experimental Station in Alajuela, Costa Rica, in a 96 m2 multispan greenhouse. The evaluated treatments were INTA H-140, INTA H-149, INTA H-168, INTA H-181, and an absolute control, using a completely randomized design with three replications. The number of live adults and infested peppers were quantified weekly. Pearson correlation analysis and repeated measures ANOVA were performed for the evaluated variables. Results. There was an interaction between treatments and days after transplant (dat) for the number of live adults (p < 0.05). INTA H-168 strain significantly reduced the Anthonomus eugenii population in the 60 dat and 64 dat evaluations, with differences of 22.96 and 47.15 adults, respectively. For the variable of the number of infested peppers, there was only an individual effect by dat (p < 0.05). Additionally, a positive correlation was found between the average number of infested peppers and the number of live adults for the 64 dat and 73 dat (p < 0.05). Conclusion. The significant reduction in live adults in the first two evaluations of INTA H-168 strain and its parasitism evidence a biological potential for the control of Anthonomus eugenii.
Downloads
References
Adeleye, V. O., Seal, D. R., Liburd, O. E., McAuslane, H., & Alborn, H. (2022). Pepper weevil, Anthonomus eugenii (Coleoptera: Curculionidae) suppression on jalapeño pepper using non-host insect repellent plants. Crop Protection, 154, Article 105893. https://doi.org/10.1016/j.cropro.2021.105893
Alali, S., Mereghetti, V., Faoro, F., Bocchi, S., Al Azmeh, F., & Montagna, M. (2019). Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates. PLoS ONE, 14(2), Article e0211457. https://doi.org/10.1371/journal.pone.0211457
Altinok, H. H., Altinok, M. A., & Koca, A. S. (2019). Modes of action of entomopathogenic fungi. Current Trends in Natural Sciences, 8(16), 117–124. https://natsci.upit.ro/issues/2019/volume-8-issue-16/modes-of-action-of-entomopathogenic-fungi/
Borisade, O. A., & Magan, N. (2014). Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinosa and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Science and Technology, 24(9), 999–1011. https://doi.org/10.1080/09583157.2014.909007
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2018). InfoStat (Versión 2020). Centro de Transferencia InfoStat. https://www.infostat.com.ar/index.php?mod=page&id=15
Esparza Mora, M. A., Conteiro Castilho, A. M., & Fraga, M. E. (2017). Classification and infection mechanism of entomopathogenic fungi. Arquivos do Instituto Biológico, 84, Article e0552015. https://doi.org/10.1590/1808-1657000552015
Espinoza-Castillo, D. F., Aragón-Sánchez, M., Aragón-García, A., Rodríguez-Leyva, E., & Rivera-Landa, M. del R. (2023). Monitoreo y fluctuación poblacional de parasitoides del picudo del chile Anthonomus eugenii (Cano, 1894) (Coleóptera: Curculionidae) en una zona productora de Puebla, México. Acta Zoológica Mexicana, 39(1), 1–9. https://doi.org/10.21829/azm.2023.3912568
Fernández, D. C., VanLaerhoven, S. L., McCreary, C., & Labbé, R. M. (2020). An overview of the pepper weevil (Coleoptera: Curculionidae) as a pest of greenhouse peppers. Journal of Integrated Pest Management, 11(1), Article 26. https://doi.org/10.1093/jipm/pmaa029
García-Carrucini, M. A., Cartín Leyva, V., & Estévez de Jensen, C. (2017). Hongos entomopatógenos nativos con potencial para el control del picudo del pimiento, Anthonomus eugenii Cano, en Puerto Rico. Journal of Agriculture of the University of Puerto Rico, 101(1), 91–106. https://revistas.upr.edu/index.php/jaupr/article/download/14296/11887/14086
Giometti, F. H. C., Wenzel, I. M. I., Almeida, J. E. M., Leite, L. G., & Zappelini, L. O. (2020). Seleção de isolados de Beauveria Bassiana para o controle de adultos do bicudo-do-algodoeiro Anthonomus Grandis (Coleoptera: Curculionidae). Arquivos do Instituto Biológico, 77(1), 167–169. https://doi.org/10.1590/1808-1657v77p1672010
Instituto de Investigación Agropecuaria de Panamá. (2010). Manejo integrado de Anthonomus eugenii Cano (Coleóptera: Curculionidae) en el cultivo de ají [Folleto técnico]. Departamento de Ediciones y Publicaciones del Instituto de Investigación Agropecuaria de Panamá. https://www.cabi.org/wp-content/uploads/Barba-2009a-IPM-Anthonomus-eugenii.pdf
Khun, K. K., Wilson, B. A. L., Stevens, M. M., Huwer, R. H., & Ash, G. J. (2020). Integration of entomopathogenic fungi into IPM programs: studies involving weevils (Coleoptera: Curculionoidea) affecting horticultural crops. Insects, 11(10), Article 659. https://doi.org/10.3390/insects11100659
Labbé, R. M., Gagnier, D., Rizzato, R., Tracey, A., & McCreary, C. (2020). Assessing new tools for management of the pepper weevil (Coleoptera: Curculionidae) in greenhouse and field pepper crops. Economic Entomology, 113(4), 190–1912. https://doi.org/10.1093/jee/toaa092
Mann, A. J., & Davis, T. S. (2020). Plant secondary metabolites and low temperature are the major limiting factors for Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) growth and virulence in a bark beetle system. Biological Control, 141, Article 104130. https://doi.org/10.1016/j.biocontrol.2019.104130
McGuire, A., & Northfield, T. (2020). Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Frontiers in Sustainable Food Systems, 4, Article 6. https://doi.org/10.3389/fsufs.2020.00006
Ministerio de Ambiente y Energía. (s. f.). Mapa de zonas de vida de Costa Rica. Instituto Geográfico Nacional. Recuperado el 20 de enero, 2023, de https://bit.ly/3Zrn65p
Moldovan, A., Munteanu, N., & Toderas, I. (2022). Temperature effects on the entomopathogenic fungi Beauveria bassiana strain CNMN-FE-01: vegetative growth, sporulation, germination rate. Current Trends in Natural Sciences, 11(21), 332–338. https://doi.org/10.47068/ctns.2022.v11i21.036
Mwamburi, L. A., Laing, M. D., & Miller, R. M. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology, 46(1), 67–74. https://doi.org/10.1590/S1517-838246120131077
Nussenbaum, A. L. (2014). Aislamientos de Beauveria bassiana y Metarhizium anisopliae virulentos para el control del picudo del algodonero, Anthonomus grandis (Coleoptera: Curculionidae) [Tesis de doctorado, Universidad de Buenos Aires]. Red de Repositorios Latinoamericanos. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5511_Nussenbaum.pdf
Pucheta Díaz, M., Flores Macías, A., Rodríguez Navarro, S., & De la Torre, M. (2006). Mecanismo de acción de los hongos entomopatógenos. Interciencia, 31(12), 856-860.
Quesada-Moraga, E., González-Mas, N., Yousef-Yousef, M., Garrido-Jurado, I., & Fernández-Bravo, M. (2024). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. Journal of Pest Science, 97, 1–15. https://doi.org/10.1007/s10340-023-01622-8
Ricaño, J., Güerri-Agulló, B., Serna-Sarriás, M. J., Rubio-Llorca, G., Asensio, L., Barranco, P., & López-Llorca, L. V. (2013). Evaluation of the pathogenicity of multiple isolates of Beauveria bassiana (Hypocreales: Clavicipitaceae) on Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) for the assessment of a solid formulation under simulated field conditions. Florida Entomologist, 96(4), 1311–1324. https://doi.org/10.1653/024.096.0410
Rossini, L., Contarini, M., Severini, M., Talano, D., & Speranza, S. (2020). A modelling approach to describe the Anthonomus eugenii (Coleoptera: Curculionidae) life cycle in plant protection: a priori and a posteriori analysis. Florida Entomologist, 103(2), 259–263. https://doi.org/10.1653/024.103.0217
Saranraj, P., & Jayaprakas, A. (2017). Agrobeneficial entomopathogenic fungi – Beauveria bassiana: a review. Indo-Asian Journal of Multidisciplinary Research, 3(2), 1051–1087. https://doi.org/10.22192/iajmr.2017.3.2.4
Seid, A. Md., Fredensborg, B. L., Steinwender, B. M., & Meyling, N. V. (2019). Temperature-dependent germination, growth and co-infection of Beauveria spp. isolates from different climatic regions. Biocontrol Science and Technology, 29(5), 411–426. https://doi.org/10.1080/09583157.2018.1564812
Servicio Fitosanitario del Estado. (2023). Informe del año 2022. Resultados obtenidos en los análisis realizados en vegetales frescos para verificar el cumplimiento de los límites máximos de residuos de plaguicidas. https://www.sfe.go.cr/DocsResiduosAgroquim/Informe_Analisis_de_Residuos_2022.pdf
Sharma, A., Sharma, S., & Kumar Yadav, P. (2023). Entomopathogenic fungi and their relevance in sustainable agriculture: a review. Cogent Food & Agriculture, 9, Article 2180857. https://doi.org/10.1080/23311932.2023.2180857
Shipp, J. L., Zhang, Y., Hunt, D. W. A., & Ferguson, G. (2003). Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environmental Entomology, 32(5), 1154–1163. https://doi.org/10.1603/0046-225X-32.5.1154
Steiner, A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134–154. https://edepot.wur.nl/309364
Torres-Ruiz, A., & Rodríguez-Leyva, E. (2012). Guía para el manejo integrado de plagas del pimiento bajo invernadero, con énfasis en el picudo del chile. Koppert México S. A. de C. V. https://doi.org/10.13140/RG.2.1.2688.4009
Van der Gaag, D. J., Schenk, M., Loomans, A., Delbianco, A., & Vos, S. (2020). Pest survey card on Anthonomus eugenii. European Food Safety Authority (EFSA), 17(6), Article 1887E. https://doi.org/10.2903/sp.efsa.2020.EN-1887
Vargas Chacón, C. (2023). Evaluación in vitro de hongos entomopatógenos en el control biológico del picudo del chile dulce Anthonomus eugenii Cano. Alcances Tecnológicos, 16(1), 44–52. http://revista.inta.go.cr/index.php/alcances_tecnologicos/article/view/245
Wang, H., Peng, H., Li, W., Cheng, P., & Gong, M. (2021). The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12, Article 705343. https://doi.org/10.3389/fmicb.2021.705343
Wu, P., Haseeb, M., Diedrick, W., Ouyang, H., Zhang, R., Kanga, L. H. B., & Legaspi, J. C. (2019). Influence of plant direction, layer, and spacing on the infestation levels of Anthonomus eugenii (Coleoptera: Curculionidae) in open jalapeño pepper fields in North Florida. Florida Entomologist, 102(3), 501–508. https://doi.org/10.1653/024.102.0319

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stephanie Quirós-Campos, Valerie Salazar-Castillo, Alejandro Vargas-Martínez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).