Biological potential of Beauveria spp. for the control of Anthonomus eugenii in sweet pepper

Authors

DOI:

https://doi.org/10.15517/am.2024.59755

Keywords:

entomopathogen, biopesticide, parasitism, biocontroller

Abstract

Introduction. Anthonomus eugenii causes considerable economic losses in sweet pepper (Capsicum annuum). Chemical control is ineffective; therefore, it is essential to explore other management alternatives. Objective. To determine the potential of Beauveria spp. strains for the biological control of Anthonomus eugenii in sweet pepper under greenhouse conditions. Materials and methods. The research was conducted between May and August 2023 at the Fabio Baudrit Moreno Agricultural Experimental Station in Alajuela, Costa Rica, in a 96 m2 multispan greenhouse. The evaluated treatments were INTA H-140, INTA H-149, INTA H-168, INTA H-181, and an absolute control, using a completely randomized design with three replications. The number of live adults and infested peppers were quantified weekly. Pearson correlation analysis and repeated measures ANOVA were performed for the evaluated variables. Results. There was an interaction between treatments and days after transplant (dat) for the number of live adults (p < 0.05). INTA H-168 strain significantly reduced the Anthonomus eugenii population in the 60 dat and 64 dat evaluations, with differences of 22.96 and 47.15 adults, respectively. For the variable of the number of infested peppers, there was only an individual effect by dat (p < 0.05). Additionally, a positive correlation was found between the average number of infested peppers and the number of live adults for the 64 dat and 73 dat (p < 0.05). Conclusion. The significant reduction in live adults in the first two evaluations of INTA H-168 strain and its parasitism evidence a biological potential for the control of Anthonomus eugenii.

Downloads

Download data is not yet available.

References

Adeleye, V. O., Seal, D. R., Liburd, O. E., McAuslane, H., & Alborn, H. (2022). Pepper weevil, Anthonomus eugenii (Coleoptera: Curculionidae) suppression on jalapeño pepper using non-host insect repellent plants. Crop Protection, 154, Article 105893. https://doi.org/10.1016/j.cropro.2021.105893

Alali, S., Mereghetti, V., Faoro, F., Bocchi, S., Al Azmeh, F., & Montagna, M. (2019). Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates. PLoS ONE, 14(2), Article e0211457. https://doi.org/10.1371/journal.pone.0211457

Altinok, H. H., Altinok, M. A., & Koca, A. S. (2019). Modes of action of entomopathogenic fungi. Current Trends in Natural Sciences, 8(16), 117–124. https://natsci.upit.ro/issues/2019/volume-8-issue-16/modes-of-action-of-entomopathogenic-fungi/

Borisade, O. A., & Magan, N. (2014). Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinosa and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Science and Technology, 24(9), 999–1011. https://doi.org/10.1080/09583157.2014.909007

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2018). InfoStat (Versión 2020). Centro de Transferencia InfoStat. https://www.infostat.com.ar/index.php?mod=page&id=15

Esparza Mora, M. A., Conteiro Castilho, A. M., & Fraga, M. E. (2017). Classification and infection mechanism of entomopathogenic fungi. Arquivos do Instituto Biológico, 84, Article e0552015. https://doi.org/10.1590/1808-1657000552015

Espinoza-Castillo, D. F., Aragón-Sánchez, M., Aragón-García, A., Rodríguez-Leyva, E., & Rivera-Landa, M. del R. (2023). Monitoreo y fluctuación poblacional de parasitoides del picudo del chile Anthonomus eugenii (Cano, 1894) (Coleóptera: Curculionidae) en una zona productora de Puebla, México. Acta Zoológica Mexicana, 39(1), 1–9. https://doi.org/10.21829/azm.2023.3912568

Fernández, D. C., VanLaerhoven, S. L., McCreary, C., & Labbé, R. M. (2020). An overview of the pepper weevil (Coleoptera: Curculionidae) as a pest of greenhouse peppers. Journal of Integrated Pest Management, 11(1), Article 26. https://doi.org/10.1093/jipm/pmaa029

García-Carrucini, M. A., Cartín Leyva, V., & Estévez de Jensen, C. (2017). Hongos entomopatógenos nativos con potencial para el control del picudo del pimiento, Anthonomus eugenii Cano, en Puerto Rico. Journal of Agriculture of the University of Puerto Rico, 101(1), 91–106. https://revistas.upr.edu/index.php/jaupr/article/download/14296/11887/14086

Giometti, F. H. C., Wenzel, I. M. I., Almeida, J. E. M., Leite, L. G., & Zappelini, L. O. (2020). Seleção de isolados de Beauveria Bassiana para o controle de adultos do bicudo-do-algodoeiro Anthonomus Grandis (Coleoptera: Curculionidae). Arquivos do Instituto Biológico, 77(1), 167–169. https://doi.org/10.1590/1808-1657v77p1672010

Instituto de Investigación Agropecuaria de Panamá. (2010). Manejo integrado de Anthonomus eugenii Cano (Coleóptera: Curculionidae) en el cultivo de ají [Folleto técnico]. Departamento de Ediciones y Publicaciones del Instituto de Investigación Agropecuaria de Panamá. https://www.cabi.org/wp-content/uploads/Barba-2009a-IPM-Anthonomus-eugenii.pdf

Khun, K. K., Wilson, B. A. L., Stevens, M. M., Huwer, R. H., & Ash, G. J. (2020). Integration of entomopathogenic fungi into IPM programs: studies involving weevils (Coleoptera: Curculionoidea) affecting horticultural crops. Insects, 11(10), Article 659. https://doi.org/10.3390/insects11100659

Labbé, R. M., Gagnier, D., Rizzato, R., Tracey, A., & McCreary, C. (2020). Assessing new tools for management of the pepper weevil (Coleoptera: Curculionidae) in greenhouse and field pepper crops. Economic Entomology, 113(4), 190–1912. https://doi.org/10.1093/jee/toaa092

Mann, A. J., & Davis, T. S. (2020). Plant secondary metabolites and low temperature are the major limiting factors for Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) growth and virulence in a bark beetle system. Biological Control, 141, Article 104130. https://doi.org/10.1016/j.biocontrol.2019.104130

McGuire, A., & Northfield, T. (2020). Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Frontiers in Sustainable Food Systems, 4, Article 6. https://doi.org/10.3389/fsufs.2020.00006

Ministerio de Ambiente y Energía. (s. f.). Mapa de zonas de vida de Costa Rica. Instituto Geográfico Nacional. Recuperado el 20 de enero, 2023, de https://bit.ly/3Zrn65p

Moldovan, A., Munteanu, N., & Toderas, I. (2022). Temperature effects on the entomopathogenic fungi Beauveria bassiana strain CNMN-FE-01: vegetative growth, sporulation, germination rate. Current Trends in Natural Sciences, 11(21), 332–338. https://doi.org/10.47068/ctns.2022.v11i21.036

Mwamburi, L. A., Laing, M. D., & Miller, R. M. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology, 46(1), 67–74. https://doi.org/10.1590/S1517-838246120131077

Nussenbaum, A. L. (2014). Aislamientos de Beauveria bassiana y Metarhizium anisopliae virulentos para el control del picudo del algodonero, Anthonomus grandis (Coleoptera: Curculionidae) [Tesis de doctorado, Universidad de Buenos Aires]. Red de Repositorios Latinoamericanos. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5511_Nussenbaum.pdf

Pucheta Díaz, M., Flores Macías, A., Rodríguez Navarro, S., & De la Torre, M. (2006). Mecanismo de acción de los hongos entomopatógenos. Interciencia, 31(12), 856-860.

Quesada-Moraga, E., González-Mas, N., Yousef-Yousef, M., Garrido-Jurado, I., & Fernández-Bravo, M. (2024). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. Journal of Pest Science, 97, 1–15. https://doi.org/10.1007/s10340-023-01622-8

Ricaño, J., Güerri-Agulló, B., Serna-Sarriás, M. J., Rubio-Llorca, G., Asensio, L., Barranco, P., & López-Llorca, L. V. (2013). Evaluation of the pathogenicity of multiple isolates of Beauveria bassiana (Hypocreales: Clavicipitaceae) on Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) for the assessment of a solid formulation under simulated field conditions. Florida Entomologist, 96(4), 1311–1324. https://doi.org/10.1653/024.096.0410

Rossini, L., Contarini, M., Severini, M., Talano, D., & Speranza, S. (2020). A modelling approach to describe the Anthonomus eugenii (Coleoptera: Curculionidae) life cycle in plant protection: a priori and a posteriori analysis. Florida Entomologist, 103(2), 259–263. https://doi.org/10.1653/024.103.0217

Saranraj, P., & Jayaprakas, A. (2017). Agrobeneficial entomopathogenic fungi – Beauveria bassiana: a review. Indo-Asian Journal of Multidisciplinary Research, 3(2), 1051–1087. https://doi.org/10.22192/iajmr.2017.3.2.4

Seid, A. Md., Fredensborg, B. L., Steinwender, B. M., & Meyling, N. V. (2019). Temperature-dependent germination, growth and co-infection of Beauveria spp. isolates from different climatic regions. Biocontrol Science and Technology, 29(5), 411–426. https://doi.org/10.1080/09583157.2018.1564812

Servicio Fitosanitario del Estado. (2023). Informe del año 2022. Resultados obtenidos en los análisis realizados en vegetales frescos para verificar el cumplimiento de los límites máximos de residuos de plaguicidas. https://www.sfe.go.cr/DocsResiduosAgroquim/Informe_Analisis_de_Residuos_2022.pdf

Sharma, A., Sharma, S., & Kumar Yadav, P. (2023). Entomopathogenic fungi and their relevance in sustainable agriculture: a review. Cogent Food & Agriculture, 9, Article 2180857. https://doi.org/10.1080/23311932.2023.2180857

Shipp, J. L., Zhang, Y., Hunt, D. W. A., & Ferguson, G. (2003). Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environmental Entomology, 32(5), 1154–1163. https://doi.org/10.1603/0046-225X-32.5.1154

Steiner, A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134–154. https://edepot.wur.nl/309364

Torres-Ruiz, A., & Rodríguez-Leyva, E. (2012). Guía para el manejo integrado de plagas del pimiento bajo invernadero, con énfasis en el picudo del chile. Koppert México S. A. de C. V. https://doi.org/10.13140/RG.2.1.2688.4009

Van der Gaag, D. J., Schenk, M., Loomans, A., Delbianco, A., & Vos, S. (2020). Pest survey card on Anthonomus eugenii. European Food Safety Authority (EFSA), 17(6), Article 1887E. https://doi.org/10.2903/sp.efsa.2020.EN-1887

Vargas Chacón, C. (2023). Evaluación in vitro de hongos entomopatógenos en el control biológico del picudo del chile dulce Anthonomus eugenii Cano. Alcances Tecnológicos, 16(1), 44–52. http://revista.inta.go.cr/index.php/alcances_tecnologicos/article/view/245

Wang, H., Peng, H., Li, W., Cheng, P., & Gong, M. (2021). The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12, Article 705343. https://doi.org/10.3389/fmicb.2021.705343

Wu, P., Haseeb, M., Diedrick, W., Ouyang, H., Zhang, R., Kanga, L. H. B., & Legaspi, J. C. (2019). Influence of plant direction, layer, and spacing on the infestation levels of Anthonomus eugenii (Coleoptera: Curculionidae) in open jalapeño pepper fields in North Florida. Florida Entomologist, 102(3), 501–508. https://doi.org/10.1653/024.102.0319

Published

2024-09-23

How to Cite

Quirós-Campos, S., Salazar-Castillo, V., & Vargas-Martínez, A. (2024). Biological potential of Beauveria spp. for the control of Anthonomus eugenii in sweet pepper. Agronomía Mesoamericana, 36, 59755. https://doi.org/10.15517/am.2024.59755