La yaca (Artocarpus heterophyllus Lam.) residuo agroindustrial en la alimentación animal: Revisión sistemática

Autores/as

DOI:

https://doi.org/10.15517/am.2025.60851

Palabras clave:

compuestos bioactivos, pequeños rumiantes, pollos, ratas.

Resumen

Introducción. En la actualidad la innovación de la industria alimentaria ha conllevado a la generación de miles de toneladas de residuos orgánicos que afectan de manera negativa la sostenibilidad ambiental, por lo que es importante que se tomen acciones que contribuyan a la reducción de desperdicios, logrando aprovechar los compuestos bioactivos que se presentan en ellos. Objetivo. Realizar una revisión de literatura sobre los nutrientes y compuestos bioactivos presentes en las principales partes de la yaca (cáscara, pulpa y semilla), para adicionar esta fruta en la alimentación de animales de producción. Desarrollo. Se realizó una revisión sistemática basada en artículos de carácter experimental localizados en bases de datos como: ScienceDirect, Wiley, Google Académico, Scopus y Springer Link, para ello se utilizó una ecuación de búsqueda. Los resultados mostraron que las diferentes partes de la yaca presentan nutrientes (proteínas, hidratos de carbono, minerales) y compuestos bioactivos (polifenoles, flavonoides, polisacáridos, fenoles, etc.), que se ha logrado comprobar que tienen un efecto positivo cuando se añade en la alimentación de animales de producción (pollos de engorda, ovejas y cabras). Conclusión. La adición de la yaca en la alimentación de animales de producción favorece la ganancia de peso, mejora la digestibilidad, estimula el sistema inmunológico y disminuye el costo de producción del alimento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adan, A.A., Ojwang, R.A., Muge, E.K., Mwanza, B.K., & Nyaboga, E.N. (2020). Phytochemical composition and essential mineral profile, antioxidant and antimicrobial potential of unutilized parts of jackfruit. Food Research, 4(4), 1125-1134. https://doi.org/10.26656/fr.2017.4(4).326

Agiang, M. A., Dongo, B.S., Williams, I.O., & Utu-Baku, A.B. (2017). Assessment of the haematological indices of albino rats fed diets supplemented with jackfruit bulb, seed or a blend of bulb and seed. International Journal of Biological and Chemical Sciences, 11(1), 397-407. http://dx.doi.org/10.4314/ijbcs.v11i1.31

Ahmed, J., & Thomas, L. (2020). Oscillating rheology of jackfruit (Artocarpus heterophyllus) seed flour dough in relation to different particle size. Journal of Food Process Engineering, 43(12), Article e13558. https://doi.org/10.1111/jfpe.13558

Akmeemana, C., Wickramasinghe, I., Wanniarachchi, P.C., & Vithanage, T. (2022). Effect of drying and frying pre-treatments on nutrient profile, antioxidant capacity, cooking time, and sensory acceptability of easy to cook jackfruit seeds. Applied Food Research, 2(2), Article 100234. https://doi.org/10.1016/j.afres.2022.100234

Antonisamy, A. J., Marimuthu, S., Malayandi, S., Rajendran, K., Lin, Y.C., Andaluri, G., Lee, S.L., & Ponnusamy, V. K. (2023). Sustainable approaches on industrial food wastes to value-added products–A review on extraction methods, characterizations, and its biomedical applications. Environmental Research, 217, Article 114758. https://doi.org/10.1016/j.envres.2022.114758

Barros-Castillo, J.C., Calderón-Santoyo, M., García-Magaña, M.L., Calderón-Chiu, C. & Ragazzo-Sánchez, J.A. (2022). Volatile compounds released by acid hydrolysis in jackfruit (Artocarpus heterophyllus Lam.). A comparative study by using SDE and HS-SPME techniques. Journal of Food Composition and Analysis, 113, Article 104701. https://doi.org/10.1016/j.jfca.2022.104701

Begum, R., Aziz, M. G., Yusof, Y. A., Saifullah, M., & Uddin, M.B. (2021). Evaluation of gelation properties of jackfruit (Artocarpus heterophyllus) waste pectin. Carbohydrate Polymer Technologies and Applications, 2, Article 100160. https://doi.org/10.1016/j.carpta.2021.100160

Brahma, R. & Ray, S. (2022). In-depth analysis on potential applications of jackfruit peel waste: A systematic approach. Food Chemistry Advances, 1, Article 100119. https://doi.org/10.1016/j.focha.2022.100119

Brahma, R., & Ray, S. (2024). Optimization of extraction conditions for cellulose from jackfruit peel using RSM, its characterization and comparative studies to commercial cellulose. Measurement: Food, 13, Article 100130. https://doi.org/10.1016/j.meafoo.2023.100130

Cagasan, C.U., Língatong, C.A., Pore, K.M., Ramada, R., Restor, C.D., & Lauzon, R. (2021). Production and quality evaluation of wine from jackfruit co-products. International Journal of Life Sciences and Biotechnology, 4(3), 340-352. https://doi.org/10.38001/ijlsb.827739

Chavez-Santiago, J.O., Rodríguez-Castillejos, G.C., Montenegro, G., Bridi R., Valdés-Gómez, H., Alvarado-Reyna, S., Castillo-Cruz, O. & Santiago-Adame, R. (2022). Phenolic content, antioxidant and antifungal activity of jackfruit extracts (Artocarpus heterophyllus Lam.). Food Science and Technology, (42), Article e02221. https://doi.org/10.1590/fst.02221

Cruz-Casillas, F.C., García-Cayuela, T., Rodriguez-Martinez, V. (2021). Application of Conventional and Non-Conventional Extraction Methods to Obtain Functional Ingredients from Jackfruit (Artocarpus heterophyllus Lam.) Tissues and By-Products. Applied Sciences, 11, Article 7303. https://doi.org/10.3390/app11167303

Dabbou, S., Renna, M., Lussiana, C., Gai, F., Rotolo, L., Kovitvadhi, A., Brugiapaglia, A., Helal, A.N., Schiavone, A., Zoccarato, I. & Gasco, L. (2017). Bilberry pomace in growing rabbit diets: effects on quality traits of hind leg meat. Italian Journal of Animal Science, 16(3), 371-379. https://doi.org/10.1080/1828051X.2017.1292413

de Sousa, A.P., Campos, A.R., Gomes, J., de Santana, R.A., Silva, A.P., de Macedo, A.D., & Costa, J. (2020). Protein enrichment of jackfruit peel waste through solid-state fermentation. Revista Brasileira de Ciências Agrárias, 15(1), 1-6. Article e6406. http://doi.org/10.5039/agraria.v15i1a6406

Eburuaja, A.S., Onabanjo, R.S., Onunkwo, D.N., & Ukenye, U.S. (2019). Performance of broiler chickens fed graded dietary levels of toasted jackfruit seed meal (Artocarpus heterophyllus). Nigerian Journal of Animal Production, 46(4), 171-178. https://doi.org/10.51791/njap.v46i4.346

Eyoh, G.D., Ibanga, G.L., Udo, M.D., & Offiong, E.E. (2021). Growth Performance of West African Dwarf (WAD) Bucks Fed Graded Levels of Toasted Jackfruit Seed Meal. Journal of Agriculture and Food Science, 5(3) 90-97. https://www.aksuja.com.ng/search/jackfruit

Eyoh, G.D., & Udoh, M.D. (2020). Effects of processed jackfruit seed based diet on nutrient intake, digestibility and nutrition in West African dwarf goats. Nigerian Journal of Animal Production, 47(5), 204-212. https://doi.org/10.51791/njap.v47i5.1271

Goswami, C., Kazal, M.K.H., Alam, O., Moon, R.J., Khatun, K., Hossan, M., & Chacrabati, R. (2021). Jackfruit Seed Powder Supplementation Attenuates High-Sugar Diet-Induced Hyperphagia and Hyperglycemia in Mice. In Biology and Life Sciences Forum, 6(92). https://doi.org/10.3390/Foods2021-10970

Gu, C. & Wu, G. (2022, November 29). The Green Development of Special Agricultural Product-Jackfruit in China. https://www.fao.org/3/cc3672en/cc3672en.pdf

Informes de expertos (2023). Mercado Global de Jackfruit. https://www.informesdeexpertos.com/informes/mercado-de-jackfruit

International Tropical Fruits Network [TFNet]. (2022, July 21). Webinar series on tropical fruits jackfruit. https://www.itfnet.org/v1/wp-content/uploads/2022/07/JACKFRUIT-REPORT-WITH-eISBN.pdf

Isinenyi, G.O., & Andrew, N. (2021). Study on the nutritional compositions of boiled jackfruit seed and its effect on the liver and kidney functions of Wistar albino rats. Inosr Applied Sciences, 7(1), 96-108. https://www.inosr.net/wp-content/uploads/2022/01/INOSR-AP-7196-108-2021.-ISINEYI.pdf

Kader, A., Sinha, S.N., & Ghosh, P. (2022). Clonal fidelity investigation of micropropagated hardened plants of jackfruit tree (Artocarpus heterophyllus L.) with RAPD markers. Journal of Genetic Engineering and Biotechnology, 20(1), 145. https://doi.org/10.1186/s43141-022-00426-0

Kamdem Bemmo, U.L., Bindzi, J.M., Tayou Kamseu, P.R., Houketchang Ndomou, S.C., Tene Tambo, S., & Ngoufack Zambou, F. (2023). Physicochemical properties, nutritional value, and antioxidant potential of jackfruit (Artocarpus heterophyllus) pulp and seeds from Cameroon eastern forests. Food Science & Nutrition, 11(8),4722-4734. http://doi.org/10.1002/fsn3.3437

Konsue, N., Bunyameen, N. & Donlao, N. (2023). Utilization of young jackfruit (Artocarpus heterophyllus Lam.) as a plant-based food ingredient: Influence of maturity on chemical attributes and changes during in vitro digestion. LWT - Food Science and Technology, 180, Article 114721. https://doi.org/10.1016/j.lwt.2023.114721

Krishnan, K.S. & Pottail, L. (2021). Green synthesis of bimetallic Ag@Au nanoparticles with aqueous fruit latex extract of Artocarpus heterophyllus and their synergistic medicinal efficacies. Applied Nanoscience, 11, 971–981, https://doi.org/10.1007/s13204-020-01657-8.

Kushwaha, R., Gupta, A., Singh, V., Kaur, S., Puranik, V., & Kaur, D. (2023). Jackfruit seed flour-based waffle ice cream cone: Optimization of ingredient levels using response surface methodology. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13140

Lazarus, B.S., Leung, V., Luu, R.K., Wong, M.T., Ruíz-Pérez, S., Barbosa, W.T., Almeida, W.B., Barbosa, J.D.V. & Meyers, M.A. (2023). Jackfruit: Composition, structure, and progressive collapsibility in the largest fruit on the Earth for impact resistance. Acta Biomaterialia, 166, 430-446. https://doi.org/10.1016/j.actbio.2023.04.040

Le, T.A.N., Lee, J.J.L., & Chen, W.N. (2023). Stimulation of lactic acid production and Lactobacillus plantarum growth in the coculture with Bacillus subtilis using jackfruit seed starch. Journal of Functional Foods, 104, Article 105535. https://doi.org/10.1016/j.jff.2023.105535

Li, B., Wang, J., Wang, X., Zhang, Y., Tan, Y., Zhang, Y., Chu, Z. & Zhang, Y. (2019). Prediction of the Postprandial Blood Sugar Response Estimated by Enzymatic Kinetics of In Vitro Digestive and Fine Molecular Structure of Artocarpus heterophyllus Lam Seed Starch and Several Staple Crop Starches. Starch-Stärke, 71(9-10), Article 1800351. https://doi.org/10.1002/star.201800351

Li, Y. F., Wu, B., Chen, J. P., Veeraperumal, S., Wei, J. C., Tan, K. S., Zhong, S. & Cheong, K. L. (2023). Prebiotic characteristics of added-value polysaccharides from jackfruit peel waste during in vitro digestion and fecal fermentation. LWT, 187, Article: 115330. https://doi.org/10.1016/j.lwt.2023.115330

Luciano, C.G.,Franco, C. M., Valencia, G.,Sobral, P. J., & Moraes, I. C. (2017). Evaluation of extraction method on the structure and physicochemical properties of starch from seeds of two jackfruit varieties. Starch‐Stärke, 69(11-12), Article 1700078. https://doi.org/10.1002/star.201700078

Maradesha, T., Patil, S.M., Phanindra, B., Achar, R.R., Silina, E., Stupin, V., & Ramu, R. (2022b). Multiprotein inhibitory effect of dietary polyphenol rutin from whole green jackfruit flour targeting different stages of diabetes mellitus: Defining a bio-computational stratagem. Separations, 9(9), Article 262. https://doi.org/10.3390/separations9090262

Maradesha, T., Patil, S.M., Al-Mutairi, K.A., Ramu, R., Madhunapantula, S.V. & Alqadi, T. (2022a). Inhibitory Effect of Polyphenols from the Whole Green Jackfruit Flour against α-Glucosidase, α-Amylase, Aldose Reductase and Glycation at Multiple Stages and Their Interaction: Inhibition Kinetics and Molecular Simulations. Molecules, 27(6), Article 1888. https://doi.org/10.3390/molecules27061888

Mashudi, M., & Nurmawati, W. (2022). Effect of fermentation on mixed rumen contents and jackfruit peel using Aspergillus oryzae on in vitro gas production and digestibility. In E3S Web of Conferences, 335, Article 00048. https://doi.org/10.1051/e3sconf/202233500048

Morelos-Flores, D.A., Anzaldo-Mendiola, R.L., Montalvo-González, E., Zamora-Gaspa, V.M., Chacón-López, M.A., Santacruz-Varela, A. & García-Magaña, M.L. (2023). Characterization and antioxidant capacity of phenolic compounds of jackfruit genotypes from Nayarit, Mexico. Food Chemistry Advances, 3, Article 100470. https://doi.org/10.1016/j.focha.2023.100470

Nakintu, J., Andama, M., Albrecht, C., Wangalwa, R., Lejju, J.B. & Olet, E.A. (2023). Morphological traits of jackfruit (Artocarpus heterophyllus Lam.): Indicators of diversity, selection and germplasm dispersion in Uganda. Scientific African, 22, Article e01900. https://doi.org/10.1016/j.sciaf.2023.e01900

Nantongo, J. S., Mudondo, S., Oluk, R., Agaba, H., & Gwali, S. (2022). Variation in seed and seedling traits of the different ethno-varieties of jackfruit, a potential fruit tree species for food security. Trees, Forests and People, 9, Article 100303. https://doi.org/10.1016/j.tfp.2022.100303

Natta, S., Pal, K., Alam, B.K., Mondal, D., Dutta, S.K., Sahana, N., Mandal, S., Bhowmick, N., Das, S.S., Mondal, P., Pandit, G.K., Paul, P.K. & Choudhury, A. (2023). In-depth evaluation of nutritive, chemical constituents and anti-glycemic properties of jackfruit (Artocarpus heterophyllus Lam) clonal accessions with flake colour diversity from Eastern Sub-Himalayan plains of India. Food Chemistry, 407, Article 135098. https://doi.org/10.1016/j.foodchem.2022.135098

Nidhina, K., Abraham, B., Fontes-Candia, C., Martínez-Abad, A., Martínez-Sanz, M., Nisha, P. & López-Rubio, A. (2022). Physicochemical and functional properties of pectin extracted from the edible portions of jackfruit at different stages of maturity. Journal of the Science of Food and Agriculture, 106, 3194-3204. https://doi.org/10.1002/jsfa.12391

Noor, F., Rahman, M.J., Mahomud, M.S., Akter, M.S., Talukder, M.A.I., & Ahmed, M. (2014). Physicochemical properties of flour and extraction of starch from jackfruit seed. International Journal of Nutrition and Food Sciences, 3(4), 347-354. https://doi.org/10.11648/j.ijnfs.20140304.27

Odukwe, C.N., Onunkwo, D.N., Eburuaja, A.S., & Mathias, V.N. (2017). Carcass and internal organ characteristics of brioler chickens fed soybean diets partialy replaced with variable levels of raw jackfruit seed meal. Nigeria Agricultural Journal, 48(1), 190-198. https://www.ajol.info/index.php/naj/article/view/162708

Ortega-González, L., Güemes-Vera, N., Piloni-Martini, J., Quintero-Lira, A., & Soto-Simental, S. (2022). Substitution of wheat flour by jackfruit (Artocarpus heterophyllus lam.) seed flour: Effects on dough rheology and deep-frying doughnuts texture and sensory analysis. International Journal of Gastronomy and Food Science, 30, Article 100612. https://doi.org/10.1016/j.ijgfs.2022.100612

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A. & Whiting, P. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Papa Spada, F., da Silva, P.P., Mandro, G.F., Margiotta, G., Spoto, M.H., Canniatti-Brazaca, S.G. (2018). Physicochemical characteristics and high sensory acceptability in cappuccinos made with jackfruit seeds replacing cocoa powder. PLoS ONE 13(8), Article e0197654. https://doi.org/10.1371/journal.pone.0197654

Ramos-Martínez, O., González-Cruz, E.M., Calderón-Santoyo, M. & Ragazzo-Sánchez, J.A. (2022). Polyisoprenes obtained from jackfruit latex (Artocarpus heterophyllus L.): Extraction and characterization. Journal of Applied Polymer Science, 139(25), Article e52392. https://doi.org/10.1002/app.52392

Ramli, A.N.M., Hamid, H.A., Zulkifli, F.H., Zamri, N., Bhuyar, P., & Manas, N.H.A. (2021). Physicochemical properties and tenderness analysis of bovine meat using proteolytic enzymes extracted from pineapple (Ananas comosus) and jackfruit (Artocarpus heterophyllus) by‐products. Journal of Food Processing and Preservation, 45(11), Article e15939. https://doi.org/10.1111/jfpp.15939.

Ranasinghe, R.A.S.N., Maduwanthi, S.D.T., & Marapana, R.A.U.J. (2019). Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review. International Journal of Food Science, 2019. https://doi.org/10.1155/2019/4327183

Rubiyah, M.H., Melethil, K., Varghese, S., Kurian, M., Babu, S., Jojo, L. & Thomas, B. (2023). Isolation and characterization of cellulose nanofibrils from agro-biomass of Jackfruit (Artocarpus heterophyllus) rind, using a soft and benign acid hydrolysis. Carbohydrate Polymer Technologies and Applications, 6, Article 100374. https://doi.org/10.1016/j.carpta.2023.100374

Sabidi, S., Koh, S.P., Abd Shukor, S., Adzni Sharifudin, S., Sew, Y.S. (2020). Safety assessment of fermented jackfruit (Artocarpus heterophyllus) pulp and leaves in Sprague-Dawley rats. Food science & nutrition, 8(8), 4370–4378. https://doi.org/10.1002/fsn3.1734

Samrot, A.V. & Sean, T.C. (2022). Investigating the antioxidant and antimicrobial activity of Artocarpus Heterophyllus Lam. (Jackfruit) Latex. Biointerface Research in Applied Chemistry, 12, 3019-3033. http://dpi.org/10.33263/BRIACI23.30193033

Sy Mohamad, S.F., Said, F.M., Munaim, M.S.A., Mohamad, S. & Sulaiman, W. M. A. (2019). Proximate composition, minerals contents, functional properties of Mastura variety jackfruit (Artocarpus heterophyllus) seeds and lethal effects of its crude extract on zebrafish (Danio rerio) embryos. Food Research, 3(5), 546-555. https://doi.org/10.26656/fr.2017.3(5).095

Sistema de Información Agroalimentaria y Pesquera. (2022) Anuario Estadístico de la Producción Agrícola. https://nube.siap.gob.mx/cierreagricola/

Spada, F.P., de Alencar, S.M., & Purgatto, E. (2022). Comprehensive chocolate aroma characterization in beverages containing jackfruit seed flours and cocoa powder. Future Foods, 6, Article 100158. https://doi.org/10.1016/j.fufo.2022.100158

Sulaiman, M.A., Yusoff, F.M., Kamarudin, M.S., Amin, S.N. & Kawata, Y. (2022). Fruit wastes improved the growth and health of hybrid red tilapia Oreochromis sp. and Malaysian mahseer, Tor tambroides (Bleeker, 1854). Aquaculture Reports, 24, Article 101177. https://doi.org/10.1016/j.aqrep.2022.101177

Thanh, L. P., Kha, P. T. T., Tinh, P. V. T., & Hang, T. T. T. (2021). Effect of jackfruit leaves on feed utilization and ruminal fermentation of growing goats. Livestock Research for Rural Development, 33(8), Article 104. https://www.lrrd.org/lrrd33/8/33104phuoc.html

Ulloa, J. A., Villalobos, C., Resendiz, J. A., Rosas, P., Ramírez, J. C., Silva, Y., & González, L. (2017). Production, physico-chemical and functional characterization of a protein isolate from jackfruit (Artocarpus heterophyllus) seeds. CYTA - Journal of Food, 15(4), 497-507. https://doi.org/10.1080/19476337.2017.1301554

United States Department of Agriculture. (2023). National Plant Germplasm System. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=70095

Utari, A., & Warly, L. (2021). Tannin contents of jackfruit leaves (Artocarpus heterophyllus) extract and moringa leaves (Moringa oleifera) extract as functional additive feed in ruminan livestock. In IOP Conference Series: Earth and Environmental Science, 757(1). http://doi.org/10.1088/1755-1315/757/1/012054.

Wignyanto, W., Rahmah, N.L., & Margani, A.D. (2014). The best solvent and extraction time in pectin production made from waste of jackfruit (bark and straw). Agroindustrial Journal, 3(1), 141. https://doi.org/10.22146/aij.v3i1.25030

Wirayudha, P., Setyono, W., Budisatria, I.G.S., Rahmawati, R., & Kustantinah, K. (2022). Effects of Dietary Supplementation with Jackfruit Leaves and Soybean Meal on Nutrient Intake and Digestibility in Sheep. In 6th International Seminar of Animal Nutrition and Feed Science (ISANFS 2021). Atlantis Press, 82-85. https://doi.org/10.2991/absr.k.220401.018

Wu, J., Zhou, X., Zhou, L., Lui, W., Zhong, J., Zhang, Y. & Liu, C. (2022). Physicochemical, structural, and functional properties of protein fractions and protein isolate from jackfruit seeds. Journal of Food Science, 87(4), 1540-1551. https://doi.org/10.1111/1750-3841.16104

Xu, F., He S.Z., Chu, Z., Zhang Y.J. & Tan, L.H. (2015). Effects of heat treatment on polyphenol oxidase activity and textural properties of jackfruit bulbs. Journal of Food Processing and Preservation, 40(5), 943-949. https://doi.org/10.1111/jfpp.12673

Zeng, S., Cao, J., Wei, C., Chen, Y., Liu, Q., Li, C., Zhang, Y., Zhu., K., Wu, G. & Tan, L. (2023). Polysaccharides from Artocarpus heterophyllus Lam. (jackfruit) pulp alleviate obesity by modulating gut microbiota in high fat diet-induced rats. Food Hydrocollids, 139, Article 108521. https://doi.org/10.1016/j.foodhyd.2023.108521

Zhang, L., Tu, Z.-c., Xie, X., Wang, H., Wang, H., Wang, Z.-x., & Lu, Y. (2017). Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and aglucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chemistry, 234, 303-313. https://doi.org/10.1016/j.foodchem.2017.05.003

Zhang, Z., Wang, Y., Zhang, Y., Chen, K., Chang, H., Ma, C., ... & Zhang, J. (2021). Synergistic effects of the jackfruit seed sourced resistant starch and Bifidobacterium pseudolongum subsp. globosum on suppression of hyperlipidemia in mice. Foods, 10(6), Article1431. https://doi.org/10.3390/foods10061431

Zuwariah, I., Noor, F., Hadijah, M.B., & Rodhiah, R. (2018). Comparison of amino acid and chemical composition of jackfruit seed flour treatment. Food Research, 2(6), 539-545. https://doi.org/10.26656/fr.2017.2(6).106

Descargas

Publicado

2025-03-31

Cómo citar

Ortega-González, L., Ayala-Martínez, M., González-Tenorio, R., Nova-Morales, G. M., Hernández-Domínguez, H., & Soto-Simental, S. (2025). La yaca (Artocarpus heterophyllus Lam.) residuo agroindustrial en la alimentación animal: Revisión sistemática. Agronomía Mesoamericana, 60851. https://doi.org/10.15517/am.2025.60851

Número

Sección

Revisiones bibliográficas