Electroencephalographic (EEG) Coherence during Imagery in Young Men

Authors

DOI:

https://doi.org/10.15517/ap.v39i139.59835

Keywords:

Functional connectivity, EEG, coherence, imagery, male participants

Abstract

Objective. The objective of the study was to characterize the electroencephalographic coherence pattern during mental imagery elicitation in young men. Method. EEG activity was recorded during two conditions, Retention (RET) and Imagery (IMG). A series of ten geometric figures were presented. Participants were asked to storage the images (RET), and to create new images based on the figure (IMG). Then, coherence values were compared between conditions. Results. Increased Coherence was presented in left and right posterior-anterior regions during mental imagery, which could be related to cognitive manipulation of stimuli in creative processes.

Downloads

Download data is not yet available.

References

Amedi, A., Malach, R., & Pascual-Leone, A. (2005). Negative BOLD differentiates visual imagery and perception. Neuron, 48(5), 859-872. https://doi.org/10.1016/j.neuron.2005.10.032

Balbuena, L. (2014). Teoría de la representación simbólica en la comunicación gráfica [Tesis doctoral, Universidad Autónoma de Barcelona]. Dipòsit digital de documents de la UAB. https://ddd.uab.cat/record/128998

Bar, M., & Neta, M. (2008). The proactive brain: using rudimentary information to make predictive judgments. Journal of Consumer Behavior: An International Research Review, 7(4-5), 319-330. https://doi.org/10.1002/cb.254

Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in cognitive sciences, 11(7), 280-289. https://doi.org/10.1016/j.tics.2007.05.005

Beato, M., Díez, E., Pinho, M., & Simões, M. (2006). Adaptación al castellano del Cuestionario de Viveza de Imágenes Visuales-Versión revisada (VVIQRV). Psicothema, 18(4), 711-716. https://www.psicothema.com/pdf/3298.pdf

Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Science, 20(2), pp. 87-95. http://dx.doi.org/10.1016/j.tics.2015.10.004

Bergmann, J., Genc, E., Kohler, A., Singer, W., & Pearson, J. (2016). Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cerebral cortex, 26(9), 3838-3850. https://doi.org/10.1093/cercor/bhv186

Binder, J., Desai, R., Graves, W., & Conant, L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral cortex, 19(12), 2767-2796. https://doi.org/10.1093/cercor/bhp055

Campos, A., & González, M. (2017). Importancia de las imágenes mentales en el pensamiento. Revista Mexicana de Investigación en Psicología, 9(2), 113119. https://doi.org/10.32870/rmip.v9i2.440

Campos, A., & Lustres, A. (2018). Gender and Age Differences in Spatial Imagery and Image Rotation. Imagination, Cognition and Personality: Consciousness in Theory, Research, and Clinical Practice, 39(1), 1-11. https://doi.org/10.1177/0276236618807895

Cueva, L. H. (2016). Dibujar y emocionar. Una pedagogía artística basada en el uso del hemisferio derecho del cerebro [Tesis de maestría, Universidad Central del Ecuador]. Repositorio Institucional Universidad Central del Ecuador. http://www.dspace.uce.edu.ec/handle/25000/7862

Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of neurophysiology, 80, 2657-2670. https://doi.org/10.1152/jn.1998.80.5.2657

D’Andrea, A., Chella, F., Marshall, T. R., Pizzella, V., Romani, G. L., Jensen, O., & Marzetti, L. (2019). Alpha and alpha-beta synchronization mediate the recruitment of the visuospatial attention network through the Superior Longitudinal Fasciculus. Neuroimage, 188, 722-732. https://doi.org/10.1016/j.neuroimage.2018.12.056

Daselaar, S., Porat, Y., Huijbers, W., & Pennartz, C. (2010. Modality-specific and modality-independent components of the human imagery system. Neuroimage, 52(2), 677-685. https://doi.org/10.1016/j.neuroimage.2010.04.239

Declaration of Helsinki. (1964). Recommendations guiding doctors in clinical research. https://www.wma.net/wp-content/uploads/2016/11/DoH-Jun1964.pdf

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. http://dx.doi.org/10.1016/j.jneumeth.2003.10.009

de Vries, I. E. J., van Driel, J., Karacaoglu, M., & Olivers, C. N. L. (2018). Priority switches in visual working memory are supported by frontal delta and posterior alpha interactions. Cerebral cortex, 28(11), 40904104. https://doi.org/10.1093/cercor/bhy223

Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704-716. https://www.nature.com/articles/35094565

Esqueda, J., Bermúdez, E., Jiménez, L., Pinto, M., Trujillo, D., Rojo, Y., Ruiz, A., Munguía, P., González, B., & González, E. (2016). Análisis de potencia y coherencia de señales electroencefalográficas en el seguimiento de un niño con trastorno del espectro autista. ELECTRO, 38, 169-174. https://www.researchgate.net/publication/311912055_ANALISIS_DE_POTENCIA_Y_COHERENCIA_DE_SENALES_ELECTROENCEFALOGRAFICAS_EN_EL_SEGUIMIENTO_DE_UN_NINO_CON_TRASTORNO_DEL_ESPECTRO_AUTISTA

Farah, M. (1989). The neural basis of mental imagery. Trends in neurosciences, 12(10), 395-399. https://doi.org/10.1016/0166-2236(89)90079-9

Farah, M. (2000). The cognitive neuroscience of vision. Blackwell Publishing.

Farah, M., Gazzaniga, M., Holtzman, J., & Kosslyn, S. (1985). A left hemisphere basis for visual mental imagery? Neuropsicología, 23(1), 115-118. https://doi.org/10.1016/0028-3932(85)90049-1

Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in cognitive sciences, 9(10), 474-480. https://doi.org/10.1016/j.tics.2005.08.011

Gallegos-Duarte, M. (2016, 16-18 de junio). Participación de los lóbulos temporales en la priorización del proceso visual [Conferencia]. VII Congreso Nacional de Tecnología Aplicada a Ciencias de la Salud, Puebla, México. 10.13140/RG.2.1.1446.8725

Gevins, A. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374

González, R., & Hornauer-Hughes, A. (2014). Cerebro y lenguaje. Revista Hospital Clínico Universidad de Chile, 25(1), 143-153. https://www.enfermeriaaps.com/portal/wp-content/uploads/2017/05/Cerebro-y-lenguaje.pdf

Guderian, S., Schott, B. H., Richardson-Klavehn, A., & Düzel, E. (2009). Medial temporal theta state before an event predicts episodic encoding success in humans. Proceedings of the National Academy of Sciences, 106(13), 5365-5370. https://doi.org/10.1073/pnas.0900289106

Guevara, M. A., Sanz-Martin, A., & Hernández-González, M. (2014). EEGbands: A computer program to statistically analyze parameters of electroencephalographic signals. Journal of Behavioral and Brain Science 4(7), 308-324. http://dx.doi.org/10.4236/jbbs.2014.47032

Guevara, M. A., & Corsi-Cabrera, M. (1996). EEG coherence or EEG correlation? International Journal of Psychophysiology, 23(3), 145-153. https://doi.org/10.1016/S0167-8760(96)00038-4

Hall, C., & Pongrac, J. (1983). Movement imagery: Questionnaire. University of Western Ontario.

Heidbreder, E. (1960). Psicologías del siglo XX. Paidós.

Holczberger, E. M. (2011). El electroencefalograma: medición de la actividad eléctrica cerebral. In J. S. Pereyra (Coord.), Métodos en neurociencias cognoscitivas (pp. 26-40). Manual Moderno.

Jasper, H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 370-375. https://pubmed.ncbi.nlm.nih.gov/10590970/

Jenkins, M. (2009). The effects of using mental imagery as a comprehension strategy for middle school students reading science expository texts [Doctoral dissertation, University of Maryland]. Digital repository of the University of Maryland. https://drum.lib.umd.edu/items/3d8a9a7e-04f5-4e23-a4d5-3aec33f62a72

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain research reviews, 29(2-3), 169-195. https://doi.org/10.1016/S0165-0173(98)00056-3

Klimesch, W., Doppelmayr, M., Stadler, W., Pöllhuber, D., Sauseng, P., & Röhm, D. (2001). Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity. Neuroscience letters, 302(1), 49-52. https://doi.org/10.1016/S0304-3940(01)01656-1

Klimesch, W., Freunberger, R., & Sauseng, P. (2010). Oscillatory mechanisms of process binding in memory. Neuroscience & Biobehavioral Reviews, 34(7), 1002-1014. https://doi.org/10.1016/j.neubiorev.2009.10.004

Kosslyn, S. (1980). Image and mind. Harvard University Press.

Kosslyn, S., Ganis, G., & Thompson, W. (2001). Neural foundations of imagery. Nature reviews neuroscience, 2(9), 635. https://doi.org/10.1038/35090055

Levy, J., Pernet, C., Treserras, S., Boulanouar, K., Berry, I., Aubry, F., & Celsis, P. (2008). Piecemeal recruitment of left-lateralized brain areas during reading: A spatio-functional account. Neuroimage, 43(3), 581-591. https://doi.org/10.1016/j.neuroimage.2008.08.008

Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 74-82. http://dx.doi.org/10.1016/j.cortex.2015.03.012

Lutzenberger, W., Pulvermüller, F., Elbert, T., & Birbaumer, N. (1995). Visual stimulation alters local 40-Hz responses in humans: An EEG-study. Neuroscience letters, 183(1-2), 39-42. https://doi.org/10.1016/0304-3940(94)11109-V

Markowitsch, H. J., & Pritzel, M. (1985). The neuropathology of amnesia. Progress in Neurobiology, 25(3), 189-287. https://doi.org/10.1016/0301-0082(85)90016-4

Martínez, N. (2014). Imaginería mental: neurofisiología e implicaciones en psiquiatría. Revista Colombiana de Psiquiatría, 43(1), 40-46. https://www.redalyc.org/pdf/806/80631555007.pdf

Mellet, E., Tzourio, N., Pietrzyk, U., Raynaud, L., Denis, M., & Mazoyer, B. (1992). Visual perception and mental imagery. European Journal of Cognitive Psychology, 16(5), 673-695. https://www.researchgate.net/publication/228124155_A_PET_meta-analysis_of_object_and_spatial_mental_imagery

Molina, J., Guevara, M. A., Hernández-González, M., Hidalgo-Aguirre, R. M., Cruz-Aguilar, M. A., & Hevia, J. (2021). Cognitive training on the solving of mathematical problems: An EEG study in young men. Actualidades en Psicología, 35(130), 131-147. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S2215-35352021000100131

Molina, G., Foschini, G., Palencia, C., Vidal, R., & Moyano, O. (1984). Área visual áreas de asociación visual percepciones visuales. Revista de la Universidad de La Salle, 4(10), 13-23. https://revistauls.lasalle.edu.co/files-articles/ruls/vol4/iss10/3/fulltext.pdf

Moore, C. J., & Price, C. J. (1999). Three distinct ventral occipitotemporal regions for reading and object naming. Neuroimage, 10(2), 181-192. https://doi.org/10.1006/nimg.1999.0450

Ostrosky, F., Gómez, E., Ardila, A., Rosselli, M., Matute, E., Pineda, D., & Lopera, F. (2003). NEUROPSI: Atención y Memoria, 6 a 85 años de edad (2da ed.). Manual Moderno.

Otegui, G. H., Morán, G., & Conesa, H. A. (2013). Teoría anatómica de la construcción de la imagen visual. Revista Argentina de Anatomía Clínica, 5(1), 10-20. https://doi.org/10.31051/1852.8023.v5.n1.14047

Pearson, J., Naseralis, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590-602. http://dx.doi.org/10.1016/j.tics.2015.08.003

Pérez-Rubín, C. (2001). La creatividad y la inspiración intuitiva. Génesis y evolución de la investigación científica de los hemisferios cerebrales. Arte, individuo y sociedad, 13, 107-122. https://revistas.ucm.es/index.php/ARIS/article/view/ARIS0101110107A

Price, C. J., & Mechelli, A. (2005). Reading and reading disturbance. Current opinion in neurobiology, 15(2), 231-238. https://doi.org/10.1016/j.conb.2005.03.003

Reisberg, D., Pearson, D., & Kosslyn, S. (2003). Intuitions and introspections about imagery: The role of imagery experience in shaping an investigator’s theoretical views. Applied Cognitive Psychology, 17, 147-160. https://doi.org/10.1002/acp.858

Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L., & Von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences, 95(12), 7092-7096. https://doi.org/10.1073/pnas.95.12.7092

Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 57(2), 97-103. https://doi.org/10.1016/j.ijpsycho.2005.03.018

Sheehan, P. W. (1967). A shortened form of Betts´ questionnaire upon mental imagery. Journal of Clinical Psychology, 23, 386-389. https://doi.org/10.1002/1097-4679(196707)23:3%3C386::AID-JCLP2270230328%3E3.0.CO;2-S

Shipley, W., Gruber, C., Martin, T., & Klein, A. (2014). Shipley-2: Escala breve de inteligencia. Manual Moderno.

Silva, J. (2011). Métodos en neurociencias cognoscitivas. Manual Moderno.

Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage, 19(3), 613-626. https://doi.org/10.1016/S1053-8119(03)00096-X

Solís, H., & López-Hernández, E. (2009). Neuroanatomía funcional de la memoria. Archivos de Neurociencias, 14(3), 176-187.

Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual review of psychology, 44(1), 453-495. https://www.annualreviews.org/doi/abs/10.1146/annurev.ps.44.020193.002321

Subirats, L., Alali, G., Briansoulet, M., Salle, J. Y., & Perrochon, A. (2018). Age and gender differences in motor imagery. Journal of the Neurological Sciences, 391, 114-117. https://doi.org/10.1016/j.jns.2018.06.015

Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 16(13), 4240-4249. https:// doi.org/10.1523/JNEUROSCI.16-13-04240.1996 Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1997). Oscillatory γ-band (30-70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17(2), 722-734. https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997

Tóth, B., Boha, R., Pósfai, M., Gaál, Z. A., Kónya, A., Stam, C. J., & Molnár, M. (2012). EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands. International Journal of Psychophysiology, 83(3), 399-402. https://doi.org/10.1016/j.ijpsycho.2011.11.017

Vera, E., Blanco, R, Villa, S., & Rico-Blanco, B. (2006). Procesos imaginativos y función frontal. Revista Española de Neuropsicología, 8, 135-145. https://dialnet.unirioja.es/servlet/articulo?codigo=2262768

Villena-González, M. (2016). El tren de los pensamientos: cómo responde nuestro cerebro al entorno mientras evocamos imágenes mentales o generamos un discurso interno. Ciencia Cognitiva, 10(1), 19-22. https://www.researchgate.net/publication/300144571

Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55(1), 143-156. https://doi.org/10.1016/j.neuron.2007.05.031

Zhang, Z., Zhang, D., Wang, Z., Li, J., Lin, Y., Chang, S., Huang, R., & Liu, M. (2018). Intrinsic neural linkage between primary visual area and default mode network in human brain: Evidence from visual mental imagery. Neuroscience, 379, 13-21. https://doi.org/10.1016/j.neuroscience.2018.02.033

Downloads

Published

2025-07-31

How to Cite

Molina del Rio , J., Hidalgo Aguirre, R. M., Reyes Cardiel, M. N., Hernández González, M., & Amezcua , C. del C. (2025). Electroencephalographic (EEG) Coherence during Imagery in Young Men. Actualidades En Psicología, 39(139), 1-18. https://doi.org/10.15517/ap.v39i139.59835

Similar Articles

1-10 of 53

You may also start an advanced similarity search for this article.