Electroencephalographic (EEG) Coherence during Imagery in Young Men
DOI:
https://doi.org/10.15517/ap.v39i139.59835Keywords:
Functional connectivity, EEG, coherence, imagery, male participantsAbstract
Objective. The objective of the study was to characterize the electroencephalographic coherence pattern during mental imagery elicitation in young men. Method. EEG activity was recorded during two conditions, Retention (RET) and Imagery (IMG). A series of ten geometric figures were presented. Participants were asked to storage the images (RET), and to create new images based on the figure (IMG). Then, coherence values were compared between conditions. Results. Increased Coherence was presented in left and right posterior-anterior regions during mental imagery, which could be related to cognitive manipulation of stimuli in creative processes.
Downloads
References
Amedi, A., Malach, R., & Pascual-Leone, A. (2005). Negative BOLD differentiates visual imagery and perception. Neuron, 48(5), 859-872. https://doi.org/10.1016/j.neuron.2005.10.032
Balbuena, L. (2014). Teoría de la representación simbólica en la comunicación gráfica [Tesis doctoral, Universidad Autónoma de Barcelona]. Dipòsit digital de documents de la UAB. https://ddd.uab.cat/record/128998
Bar, M., & Neta, M. (2008). The proactive brain: using rudimentary information to make predictive judgments. Journal of Consumer Behavior: An International Research Review, 7(4-5), 319-330. https://doi.org/10.1002/cb.254
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in cognitive sciences, 11(7), 280-289. https://doi.org/10.1016/j.tics.2007.05.005
Beato, M., Díez, E., Pinho, M., & Simões, M. (2006). Adaptación al castellano del Cuestionario de Viveza de Imágenes Visuales-Versión revisada (VVIQRV). Psicothema, 18(4), 711-716. https://www.psicothema.com/pdf/3298.pdf
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Science, 20(2), pp. 87-95. http://dx.doi.org/10.1016/j.tics.2015.10.004
Bergmann, J., Genc, E., Kohler, A., Singer, W., & Pearson, J. (2016). Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cerebral cortex, 26(9), 3838-3850. https://doi.org/10.1093/cercor/bhv186
Binder, J., Desai, R., Graves, W., & Conant, L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral cortex, 19(12), 2767-2796. https://doi.org/10.1093/cercor/bhp055
Campos, A., & González, M. (2017). Importancia de las imágenes mentales en el pensamiento. Revista Mexicana de Investigación en Psicología, 9(2), 113119. https://doi.org/10.32870/rmip.v9i2.440
Campos, A., & Lustres, A. (2018). Gender and Age Differences in Spatial Imagery and Image Rotation. Imagination, Cognition and Personality: Consciousness in Theory, Research, and Clinical Practice, 39(1), 1-11. https://doi.org/10.1177/0276236618807895
Cueva, L. H. (2016). Dibujar y emocionar. Una pedagogía artística basada en el uso del hemisferio derecho del cerebro [Tesis de maestría, Universidad Central del Ecuador]. Repositorio Institucional Universidad Central del Ecuador. http://www.dspace.uce.edu.ec/handle/25000/7862
Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of neurophysiology, 80, 2657-2670. https://doi.org/10.1152/jn.1998.80.5.2657
D’Andrea, A., Chella, F., Marshall, T. R., Pizzella, V., Romani, G. L., Jensen, O., & Marzetti, L. (2019). Alpha and alpha-beta synchronization mediate the recruitment of the visuospatial attention network through the Superior Longitudinal Fasciculus. Neuroimage, 188, 722-732. https://doi.org/10.1016/j.neuroimage.2018.12.056
Daselaar, S., Porat, Y., Huijbers, W., & Pennartz, C. (2010. Modality-specific and modality-independent components of the human imagery system. Neuroimage, 52(2), 677-685. https://doi.org/10.1016/j.neuroimage.2010.04.239
Declaration of Helsinki. (1964). Recommendations guiding doctors in clinical research. https://www.wma.net/wp-content/uploads/2016/11/DoH-Jun1964.pdf
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
de Vries, I. E. J., van Driel, J., Karacaoglu, M., & Olivers, C. N. L. (2018). Priority switches in visual working memory are supported by frontal delta and posterior alpha interactions. Cerebral cortex, 28(11), 40904104. https://doi.org/10.1093/cercor/bhy223
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704-716. https://www.nature.com/articles/35094565
Esqueda, J., Bermúdez, E., Jiménez, L., Pinto, M., Trujillo, D., Rojo, Y., Ruiz, A., Munguía, P., González, B., & González, E. (2016). Análisis de potencia y coherencia de señales electroencefalográficas en el seguimiento de un niño con trastorno del espectro autista. ELECTRO, 38, 169-174. https://www.researchgate.net/publication/311912055_ANALISIS_DE_POTENCIA_Y_COHERENCIA_DE_SENALES_ELECTROENCEFALOGRAFICAS_EN_EL_SEGUIMIENTO_DE_UN_NINO_CON_TRASTORNO_DEL_ESPECTRO_AUTISTA
Farah, M. (1989). The neural basis of mental imagery. Trends in neurosciences, 12(10), 395-399. https://doi.org/10.1016/0166-2236(89)90079-9
Farah, M. (2000). The cognitive neuroscience of vision. Blackwell Publishing.
Farah, M., Gazzaniga, M., Holtzman, J., & Kosslyn, S. (1985). A left hemisphere basis for visual mental imagery? Neuropsicología, 23(1), 115-118. https://doi.org/10.1016/0028-3932(85)90049-1
Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in cognitive sciences, 9(10), 474-480. https://doi.org/10.1016/j.tics.2005.08.011
Gallegos-Duarte, M. (2016, 16-18 de junio). Participación de los lóbulos temporales en la priorización del proceso visual [Conferencia]. VII Congreso Nacional de Tecnología Aplicada a Ciencias de la Salud, Puebla, México. 10.13140/RG.2.1.1446.8725
Gevins, A. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374
González, R., & Hornauer-Hughes, A. (2014). Cerebro y lenguaje. Revista Hospital Clínico Universidad de Chile, 25(1), 143-153. https://www.enfermeriaaps.com/portal/wp-content/uploads/2017/05/Cerebro-y-lenguaje.pdf
Guderian, S., Schott, B. H., Richardson-Klavehn, A., & Düzel, E. (2009). Medial temporal theta state before an event predicts episodic encoding success in humans. Proceedings of the National Academy of Sciences, 106(13), 5365-5370. https://doi.org/10.1073/pnas.0900289106
Guevara, M. A., Sanz-Martin, A., & Hernández-González, M. (2014). EEGbands: A computer program to statistically analyze parameters of electroencephalographic signals. Journal of Behavioral and Brain Science 4(7), 308-324. http://dx.doi.org/10.4236/jbbs.2014.47032
Guevara, M. A., & Corsi-Cabrera, M. (1996). EEG coherence or EEG correlation? International Journal of Psychophysiology, 23(3), 145-153. https://doi.org/10.1016/S0167-8760(96)00038-4
Hall, C., & Pongrac, J. (1983). Movement imagery: Questionnaire. University of Western Ontario.
Heidbreder, E. (1960). Psicologías del siglo XX. Paidós.
Holczberger, E. M. (2011). El electroencefalograma: medición de la actividad eléctrica cerebral. In J. S. Pereyra (Coord.), Métodos en neurociencias cognoscitivas (pp. 26-40). Manual Moderno.
Jasper, H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 370-375. https://pubmed.ncbi.nlm.nih.gov/10590970/
Jenkins, M. (2009). The effects of using mental imagery as a comprehension strategy for middle school students reading science expository texts [Doctoral dissertation, University of Maryland]. Digital repository of the University of Maryland. https://drum.lib.umd.edu/items/3d8a9a7e-04f5-4e23-a4d5-3aec33f62a72
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain research reviews, 29(2-3), 169-195. https://doi.org/10.1016/S0165-0173(98)00056-3
Klimesch, W., Doppelmayr, M., Stadler, W., Pöllhuber, D., Sauseng, P., & Röhm, D. (2001). Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity. Neuroscience letters, 302(1), 49-52. https://doi.org/10.1016/S0304-3940(01)01656-1
Klimesch, W., Freunberger, R., & Sauseng, P. (2010). Oscillatory mechanisms of process binding in memory. Neuroscience & Biobehavioral Reviews, 34(7), 1002-1014. https://doi.org/10.1016/j.neubiorev.2009.10.004
Kosslyn, S. (1980). Image and mind. Harvard University Press.
Kosslyn, S., Ganis, G., & Thompson, W. (2001). Neural foundations of imagery. Nature reviews neuroscience, 2(9), 635. https://doi.org/10.1038/35090055
Levy, J., Pernet, C., Treserras, S., Boulanouar, K., Berry, I., Aubry, F., & Celsis, P. (2008). Piecemeal recruitment of left-lateralized brain areas during reading: A spatio-functional account. Neuroimage, 43(3), 581-591. https://doi.org/10.1016/j.neuroimage.2008.08.008
Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 74-82. http://dx.doi.org/10.1016/j.cortex.2015.03.012
Lutzenberger, W., Pulvermüller, F., Elbert, T., & Birbaumer, N. (1995). Visual stimulation alters local 40-Hz responses in humans: An EEG-study. Neuroscience letters, 183(1-2), 39-42. https://doi.org/10.1016/0304-3940(94)11109-V
Markowitsch, H. J., & Pritzel, M. (1985). The neuropathology of amnesia. Progress in Neurobiology, 25(3), 189-287. https://doi.org/10.1016/0301-0082(85)90016-4
Martínez, N. (2014). Imaginería mental: neurofisiología e implicaciones en psiquiatría. Revista Colombiana de Psiquiatría, 43(1), 40-46. https://www.redalyc.org/pdf/806/80631555007.pdf
Mellet, E., Tzourio, N., Pietrzyk, U., Raynaud, L., Denis, M., & Mazoyer, B. (1992). Visual perception and mental imagery. European Journal of Cognitive Psychology, 16(5), 673-695. https://www.researchgate.net/publication/228124155_A_PET_meta-analysis_of_object_and_spatial_mental_imagery
Molina, J., Guevara, M. A., Hernández-González, M., Hidalgo-Aguirre, R. M., Cruz-Aguilar, M. A., & Hevia, J. (2021). Cognitive training on the solving of mathematical problems: An EEG study in young men. Actualidades en Psicología, 35(130), 131-147. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S2215-35352021000100131
Molina, G., Foschini, G., Palencia, C., Vidal, R., & Moyano, O. (1984). Área visual áreas de asociación visual percepciones visuales. Revista de la Universidad de La Salle, 4(10), 13-23. https://revistauls.lasalle.edu.co/files-articles/ruls/vol4/iss10/3/fulltext.pdf
Moore, C. J., & Price, C. J. (1999). Three distinct ventral occipitotemporal regions for reading and object naming. Neuroimage, 10(2), 181-192. https://doi.org/10.1006/nimg.1999.0450
Ostrosky, F., Gómez, E., Ardila, A., Rosselli, M., Matute, E., Pineda, D., & Lopera, F. (2003). NEUROPSI: Atención y Memoria, 6 a 85 años de edad (2da ed.). Manual Moderno.
Otegui, G. H., Morán, G., & Conesa, H. A. (2013). Teoría anatómica de la construcción de la imagen visual. Revista Argentina de Anatomía Clínica, 5(1), 10-20. https://doi.org/10.31051/1852.8023.v5.n1.14047
Pearson, J., Naseralis, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590-602. http://dx.doi.org/10.1016/j.tics.2015.08.003
Pérez-Rubín, C. (2001). La creatividad y la inspiración intuitiva. Génesis y evolución de la investigación científica de los hemisferios cerebrales. Arte, individuo y sociedad, 13, 107-122. https://revistas.ucm.es/index.php/ARIS/article/view/ARIS0101110107A
Price, C. J., & Mechelli, A. (2005). Reading and reading disturbance. Current opinion in neurobiology, 15(2), 231-238. https://doi.org/10.1016/j.conb.2005.03.003
Reisberg, D., Pearson, D., & Kosslyn, S. (2003). Intuitions and introspections about imagery: The role of imagery experience in shaping an investigator’s theoretical views. Applied Cognitive Psychology, 17, 147-160. https://doi.org/10.1002/acp.858
Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L., & Von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences, 95(12), 7092-7096. https://doi.org/10.1073/pnas.95.12.7092
Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 57(2), 97-103. https://doi.org/10.1016/j.ijpsycho.2005.03.018
Sheehan, P. W. (1967). A shortened form of Betts´ questionnaire upon mental imagery. Journal of Clinical Psychology, 23, 386-389. https://doi.org/10.1002/1097-4679(196707)23:3%3C386::AID-JCLP2270230328%3E3.0.CO;2-S
Shipley, W., Gruber, C., Martin, T., & Klein, A. (2014). Shipley-2: Escala breve de inteligencia. Manual Moderno.
Silva, J. (2011). Métodos en neurociencias cognoscitivas. Manual Moderno.
Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage, 19(3), 613-626. https://doi.org/10.1016/S1053-8119(03)00096-X
Solís, H., & López-Hernández, E. (2009). Neuroanatomía funcional de la memoria. Archivos de Neurociencias, 14(3), 176-187.
Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual review of psychology, 44(1), 453-495. https://www.annualreviews.org/doi/abs/10.1146/annurev.ps.44.020193.002321
Subirats, L., Alali, G., Briansoulet, M., Salle, J. Y., & Perrochon, A. (2018). Age and gender differences in motor imagery. Journal of the Neurological Sciences, 391, 114-117. https://doi.org/10.1016/j.jns.2018.06.015
Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 16(13), 4240-4249. https:// doi.org/10.1523/JNEUROSCI.16-13-04240.1996 Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1997). Oscillatory γ-band (30-70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17(2), 722-734. https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997
Tóth, B., Boha, R., Pósfai, M., Gaál, Z. A., Kónya, A., Stam, C. J., & Molnár, M. (2012). EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands. International Journal of Psychophysiology, 83(3), 399-402. https://doi.org/10.1016/j.ijpsycho.2011.11.017
Vera, E., Blanco, R, Villa, S., & Rico-Blanco, B. (2006). Procesos imaginativos y función frontal. Revista Española de Neuropsicología, 8, 135-145. https://dialnet.unirioja.es/servlet/articulo?codigo=2262768
Villena-González, M. (2016). El tren de los pensamientos: cómo responde nuestro cerebro al entorno mientras evocamos imágenes mentales o generamos un discurso interno. Ciencia Cognitiva, 10(1), 19-22. https://www.researchgate.net/publication/300144571
Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55(1), 143-156. https://doi.org/10.1016/j.neuron.2007.05.031
Zhang, Z., Zhang, D., Wang, Z., Li, J., Lin, Y., Chang, S., Huang, R., & Liu, M. (2018). Intrinsic neural linkage between primary visual area and default mode network in human brain: Evidence from visual mental imagery. Neuroscience, 379, 13-21. https://doi.org/10.1016/j.neuroscience.2018.02.033
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivativeWorks 4.0 Unported license




