Resumen
Sea clutter is the main interfering signal in radar systems. In order to develop appropriate strategies for clutter suppression, an algorithm able to identify the distribution of radar readings becomes necessary. By using several popular methods found in the related literature, the authors design an algorithm able to identify the clutter distribution and its corresponding parameters. The proposed solution, which included the widely used maximum likelihood method and the Kolmogorov-Smirnov statistic test, was implemented in a software application with an intuitive graphical interface. As a result, a viable instance of the algorithm became available for educational and research purposes, particularly as a comparative base for estimating the effect of the size increase in the sample set when estimating the probability distribution.
Citas
Madisetti V. The Digital Signal Processing Handbook, 2nd ed. United States:
CRC Press; 2010.
Richards M, Scheer J, Holm W. Principles of Modern Radar Vol I Basic Principles. United States: Scitech Publishing.; 2010.
Skolnik M. Radas Handbook, 3rd ed. United States: McGraw-Hill; 2008.
Watts S. Radar Detection Prediction in K-distributed Sea Clutter and Thermal Noise. IEEE Transactions 1987; 23(1): 40-45.
Ward K, Tough R, Watts S. Sea Clutter. Scattering, the K distribution and Radar Performance, 2nd ed. England, London: The Institution of Engineering and Technology; 2013.
Chen Z, Liu X, Wu Z, Wang X. The Analysis of Sea Clutter Statistics Characteristics Based on the Observed Sea Clutter of Ku-Band Radar. Antennas & Propagation (ISAP), 2013 Proceedings of the International Symposium on 2013; 2(1): 1183-1186.
Makhoul E, Zhan Y, Broquetas A, Ruiz Rodon J, Baumgartner S. Sea Clutter Statistical Characterization using Terrasar-X Data. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International 2014: 51-30.
Mezache A, Soltani F, Sahed M, Chalabi I. A model for non Rayleigh sea clutter amplitudes using compound Inverse Gaussian distribution. 2013 IEEE Radar Conference (RadarCon13) 2013: 1-5.
Palama R, Maria G, Stinco P, Gini F. Statistical analysis of netrad high resolution sea clutter. 21st European Signal Processing Conference (EUSIPCO 2013) 2013: 1-5.
Sayama S, Ishii S. Suppression of Log-Normal Distributed Weather Clutter Observed by an S-Band Radar. Wireless Engineering and Technology 2013; 4(3): 125-133.
Haykin S, Bakker R, Currie B. Uncovering nonlinear dynamics—The case study of sea clutter. Proceedings IEEE 2002; 90: 160-861.
Conte E, De Maio A, Galdi C. Statistical Analysis of Real Clutter at Different
Range Resolutions. IEEE Transactions on Aerospace and Electronic Systems 2004: 2024-2037.
Farina A, Gini F, Greco M, Verrazzani L. High Resolution Sea Clutter Data: Statistical Analysis of Recorded Live Data. IEEE Proccedins on Radar, Sonar and Navigation 1997; 144(3) : 121-130.
Greco M, Bordoni F, Gini F. X-Band Sea-Clutter nonstationarity: Influence of Long Waves. IEEE Journal of Oceanic Engineering 2004; 29(2).
Nohara T, Haykin S. Canadian East Coast Radar Trials and the K-Distribution. IEEE Proceedings 1991; 138(2): 80-88.
Abraham D, Preston J. Statistical Analysis of Monostatic and Bistatic Echoes from ShipWreck. Underwater Acoustic Measurements: Technologies and Results 2011; 2(1): 629-636.
Ward K. Compound Representation of High Resolution Sea Clutter. Electron Letters 1981; 17(16): 561-563.
Ishii S, Sayama S, Mizutani K. Effect of Changes in Sea-Surface State on Statistical Characteristics of Sea Clutter with X-band Radar. Wireless Engineering and Technology 2011; 2(3): 175-183.
Trunk G, George S. Detection of targets in Non-Gaussian Sea Clutter. IEEE Transactions 1970; 6: 620-628.
Fay F, Clarke J, Peters R. Weibull Distribution Applied to Sea-clutter. Inst. Elect. Eng. Radar Conf. ’77. London, 1977.
Ping Q. Analysis of Ocean Clutter for Wide-Band Radar Based on Real Data. ICCC'11, Wuhan, China 2011: 107-112.
Weinberg G V. Assessing Pareto fit to high-resolution high-grazing angle sea-clutter. IET Electronic Letters 2011; 47: 516-517
Dong Y. Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter, Technical Report DSTO-RR-0316. Australia: Electronic Warfare and Radar Division, Defence Science and Technology Organisation; 2006.
Machado Fernández J R. Empleo de las Redes Neuronales Artificiales en la Estimación de los Parámetros del Clutter Marino Distribuido Weibull. VIII Congreso Internacional de Telemática y Telecomunicaciones, Convención Científica de Ingeniería y Arquitectura '14: La Habana, Cuba: 2014.
Machado Fernández J R, Bueno González A. Clasificación del Clutter Marino
utilizando Redes Neuronales Artificiales. Instituto Superior Politécnico José Antonio Echeverría (ISPJAE): La Habana, Cuba: 2012.
Machado Fernández J R, García Delgado B, Machado Gil A. Reconocimientos de Parámetros de la Distribución K Asociados a Mediciones de Clutter Marino usando Redes Neuronales Artificiales. VIII Congreso Internacional de Telemática y Telecomunicaciones, Convención Científica de Ingeniería y Arquitectura '14: La Habana, Cuba: 2014.
Antipov I. Statistical Analysis of Northern Australian Coastline Sea Clutter Data (Vol. DSTO-TR-1236). Edinburgh, South Australia: Surveillance Systems Division, Electronics and Surveillance Research Laboratory; 2001.
Carretero J, Gismero J, Asensio A, Blanco del Campo Á. Experimental Validation of the Compound Gaussian Sea Clutter Model at Sub-Meter Range Resolution. 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009) 2009: 1-5.
Davidson G, Griffiths H D, Ablett S. Analysis of High-Resolution Land Clutter. IEE Proceedings - Vision, Image and Signal Processing 2004; 151(1): 86-91.
Rajalakshmi Menon K, Balakrishnan N, Janakiraman M, Ramchand K. Characterization of Fluctuation Statistics of Radar Clutter for Indian Terrain. IEEE Transactions on Geoscience and Remote Sensing 1995; 33(2): 317-324.
Jurgens Strydom J. Generic Ground Clutter Simulation for Radar Testing and Evaluation [Master of Engineering Specialising in Radar ]. University of Cape Town; 2012.
Chan H C. Radar Sea-Clutter at Low Grazing Angles. IEE Proceedings, 1990; 137(2): 102-11.
Vargas Aguilar J C. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. XII Premio de Investigación sobre Seguros y Fianzas 2005: Comisión Nacional de Seguros y Fianzas, Tercer Lugar Categoría Seguros: México: 2005.
Hu J, Tung W, Gao J B. Modeling Sea Clutter as a Nonstationary and Nonextensive Random Process. 2006 IEEE Conference on Radar 2006.
Messina M, Greco M, Pinelli G. Statistical Characterization of High Resolution SAR Images under Different Sea State Conditions. Proceedings of IEEE GOLD 2010.
O’Connor A N. Probability Distributions Used in Reliability Engineering. United States: University of Maryland; 2011.
González García J E. Contribución la Detección no Paramétrica de la Señal Radar con Clutter no Gaussiano. Spain: Universidad Politécnica de Madrid; 2008.
Antipov T. Analysis of Sea Clutter Data, Technical Report DSTO-TR-0647. Australia: Defence Science Technology Organisation; 1998.
Oliver C J. Optimum Texture Estimators for SAR Clutter. Journal of Physics D: Applied Physics 1993: 1824-1835.
Dong Y. Clutter Spatial Distribution and New Approaches of Parameter Estimation for Weibull and K-Distributions, DSTO-RR-0274. Edingburgh South Asutralia: DSTO Systems Sciences Labpratory; 2004.
D’Agostino R B, Stephens M A. Goodness of Fit Techniques. New York: Marcel Dekker; 1986.
Siegel S. Non-parametric statistics for the behavioral sciences. New York: McGraw-Hill; 1956.
Zhou Y H, Gao J B, White K D, Merk I, Yao K. Perceptual dominance time distributions in multistable visual perception. Biol. Cybern 2004; 90.