Resumen
La aplicación de bioestimulantes y el uso de diversos porcentajes de drenaje pueden afectar la producción en la agricultura protegida. Se evaluó el efecto de la aplicación del bioestimulante Algamix® (vía foliar, vía radicular, y testigo) y dos porcentajes de drenaje (10 % y 30 %) sobre el rendimiento y la calidad del chile dulce cv. Nathalie cultivado bajo invernadero. Las variables evaluadas fueron: altura de planta (cm), diámetro de tallo (mm), número de frutos por planta, peso del fruto (g), rendimiento (ton/ha), y porcentaje de sólidos solubles totales (°Brix). La aplicación del bioestimulante no produjo diferencias estadísticamente significativas en ninguna de las variables, excepto en el rendimiento de frutos de tercera calidad, donde las plantas que recibieron la aplicación foliar del bioestimulante produjeron un menor rendimiento, en relación con el testigo. En comparación con las plantas que tuvieron un 30 % de drenaje, las plantas con un 10 % de drenaje presentaron: una menor cantidad de frutos por planta y un menor rendimiento, en el caso de primera calidad; una mayor cantidad de frutos por planta y un mayor rendimiento, en el caso de tercera calidad; un menor peso del fruto (total y de primera calidad); y un menor porcentaje de sólidos solubles totales del fruto. La aplicación del bioestimulante no mejoró ni el rendimiento ni la calidad del chile dulce, por lo que no se recomienda su uso, bajo las condiciones en que se realizó el estudio. Se recomienda el uso de un drenaje del 30 % en chile dulce cultivado en invernadero, dado que produjo el mayor rendimiento de frutos de primera calidad.
Citas
Ali, O., Ramsubhag, A., & Jayaraman, J. (2019). Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. Plos One, 14(5), e0216710. https://journals.plos.org/plosone/article?id=10.1371/journal. pone.0216710
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production. Plants, 10(531), 1-27. https://www.mdpi. com/2223-7747/10/3/531
Alvarado-Sánchez, T., & Monge-Pérez, J. E. (2015). Efecto de la aplicación de bioactivadores y del raleo manual de frutos sobre el rendimiento y la calidad de melón (Cucumis melo L.) bajo cultivo protegido en Costa Rica. Tecnología en Marcha, 28(4), 15-25. https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2439
An, C. G., Hwang, Y. H., An, J. U., Yoon, H. S., Chang, Y. H., Shon, G. M., Hwang, S. J., Kim, K. S., & Rhee, H. C. (2012). Effect of irrigation methods for reducing drainage on growth and yield of paprika (Capsicum annuum ‘Coletti’) in rockwool and cocopeat culture. Journal of Bio-Environment Control, 21(3), 228-235. https://agris. fao.org/agris-search/search.do?recordID=KR2015005494
Anchundia, A. A. (2017). Comportamiento agronómico del cultivo de pimiento (Capsicum annuum L.) por la aplicación de dosis de algas marinas en la zona de Vinces-Ecuador. [Tesis de Ingeniería Agronómica, Facultad de Ciencias para el Desarrollo, Universidad de Guayaquil].
Andrade, O., & Garcés, A. (2019). Respuesta productiva del Capsicum annuum L. a la aplicación de un bioestimulante como complemento de una fertilización edáfica química. Revista DELOS, 12(34), 1-11. https://www.eumed.net/rev/ delos/34/bioestimulante-fertilizacion.pdf
Armijos, S. I. (2014). Respuesta del pimiento (Capsicum annuum L.) a la aplicación de bioestimulantes en la parroquia El Progreso, cantón Pasaje. [Tesis de la Escuela de Ingeniería Agronómica, Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala]. http://repositorio.utmachala.edu.ec/ handle/48000/1065
Arthur, G. D., Stirk, W. A., & Van Staden, J. (2003). Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. South African Journal of Botany, 69(2), 207-211. https://www.sciencedirect.com/science/article/pii/ S0254629915303483
Ashour, M., Hassan, S. M., Elshobary, M. E., Ammar, G. A. G., Gaber, A., Alsanie, W. F., Mansour, A. T., & El-Shenody, R. (2021). Impact of commercial seaweed liquid extract (TAM®) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants, 10(1045), 1-13. https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC8224274/
Baixauli, C. y Aguilar, J. M. (2002). Cultivo sin suelo de hortalizas; aspectos prácticos y experiencias. Textos i Imatges, S. A. Valencia, España. 59 p. https:// ivi a . g v a . e s / documents/161862582/161863558/ Cultivo+sin+suelo+de+hortalizas
Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. https://www.sciencedirect. com/science/article/abs/pii/S030442381530176X
Chaves-Barrantes, N. F., Gutiérrez-Soto, M. V. (2017). Respuestas al estrés por calor en los cultivos. I. Aspectos moleculares, bioquímicos y fisiológicos. Agronomía Mesoamericana, 28(1), 237-253. https://www.scielo.sa.cr/ scielo.php?pid=S1659-13212017000100020&script=sci_abstract&tlng=es
Coello, H. E. (2020). Efecto de la aplicación edáfica y foliar de extractos de algas marinas en el cultivo de pimiento (Capsicum annuum L.). [Tesis de Ingeniería Agronómica, Facultad de Ciencias Agrarias, Universidad Agraria del Ecuador]. https:// cia.uagraria.edu.ec/Archivos/COELLO%20VILLAMAR%20 HENRY%20EDUARDO.pdf
Deepika, & Tiwari, S. P. (2021). Effect of different Biozyme concentration for maximum yield potential in Capsicum annuum L. International Journal of Chemical Studies, 9(2), 432-436. https://www.chemijournal.com/archives/?year=2021&vol=9&issue=2&ArticleId=11855&si=false
Elizondo-Cabalceta, E., & Monge-Pérez, J. E. (2019). Pimiento (Capsicum annuum) cultivado bajo invernadero: correlaciones entre variables. Revista Posgrado y Sociedad, 17(2), 33-60. https://revistas.uned.ac.cr/index.php/posgrado/article/ view/2278
Espinosa-Antón, A. A., Hernández-Herrera, R. M., & González, M. (2020). Extractos bioactivos de algas marinas como bioestimulantes del crecimiento y la protección de las plantas. Biotecnología Vegetal, 20(4), 257-282. https://revista.ibp. co.cu/index.php/BV/article/view/677/html
Giuffrida, F., Argento, S., Lipari, V., & Leonardi, C. (2003). Methods for controlling salt accumulation in substrate cultivation. Acta Horticulturae, 614, 799-803. https://www. actahort.org/books/614/614_117.htm
Hussein, H. A., Jawad, D. H., & Abboud, A. K. (2019). Effect of foliar nutrition by seaweed extract marmarine and basfoliar aktiv in growth and yield of pepper sweet (Along type) Sierra Nevada variety under in plastic houses conditions. International Journal of Botany Studies, 4(4), 112-116. http:// www.botanyjournals.com/archives/2019/vol4/issue4/4-3-23
Karapanos, I. C., Mahmood, S., & Thanopoulos, C. (2008). Fruit set in solanaceous vegetable crops as affected by floral and environmental factors. The European Journal of Plant Science and Biotechnology, 2(Special Issue 1), 88-105. http://www. globalsciencebooks.info/Online/GSBOnline/images/0812/ EJPSB_2(SI1)/EJPSB_2(SI1)88-105o.pdf
Lida Plant Research. (2022). Algamix®: bioactivador a base de algas marinas. Ficha técnica. Valencia, España. 2 p.
López-López, A. J., & Benavides-León, C. (2014). Respuesta térmica del invernadero de la Estación Experimental Fabio Baudrit Moreno, Alajuela, Costa Rica. Agronomía Mesoamericana, 25(1), 121-132. https://www.scielo.sa.cr/scielo. php?script=sci_arttext&pid=S1659-13212014000100012
Maraei, R., Eliwa, N., & Aly, A. (2019). Use of some biostimulants to improve the growth and chemical constituents of sweet pepper. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 553-561. https://potravinarstvo.com/journal1/index.php/ potravinarstvo/article/view/1131
Marhoon, I. A., & Abbas, M. K. (2015). Effect of foliar application of seaweed extract and amino acids on some vegetative and anatomical characters of two sweet pepper (Capsicum annuum L.) cultivars. International Journal of Research Studies in Agricultural Sciences, 1(1), 35-44. https://www.arcjournals.org/international-journal-of-research-studies-in-agricultural-sciences/ volume-1-issue-1/5
Pardossi, A., Malorgio, F., Incrocci, L., Carmassi, G., Maggini, R., Massa, D., & Tognoni, F. (2006). Simplified models for the water relations of soilless cultures: what they do or suggest for sustainable water use in intensive horticulture. Acta Horticulturae, 718, 1-10. https://www.actahort.org/ books/718/718_49.htm
Pohl, A., Kalisz, A., & Sekara, A. (2019). Seaweed extracts’ multifactorial action: influence on physiological and biochemical status of Solanaceae plants. Acta Agrobotanica, 72(1), 1758. https://pbsociety.org.pl/journals/index.php/aa/article/view/ aa.1758/0
Pramanik, K., Mohapatra, P. P., Pradhan, J., Acharya, L. K., & Jena, C. (2020). Factors influencing performance of Capsicum under protected cultivation: a review. International Journal of Environment and Climate Change, 10(12), 572-588. https://journalijecc.com/index.php/IJECC/article/view/30339
Roy, S., Chatterjee, S., Hossain, M. A., Basfore, S., & Karak, C. (2019). Path analysis study and morphological characterization of sweet pepper (Capsicum annuum L. var. grossum). International Journal of Chemical Studies, 7(1), 1777-1784. https://www.chemijournal.com/ archives/?year=2019&vol=7&issue=1&ArticleId=4970&si=false
Shabana, A. I., Shafeek, M. R., Ahmed, H. I., & Abdel-Al, F. S. (2015). Improving growth, fruit setting, total yield and fruit quality of sweet pepper plants (Capsicum annuum L.) by using antioxidant and seaweed extracts. Middle East Journal of Agriculture Research, 4(2), 154-161. https://www.curresweb.com/mejar/ mejar/2015/154-161.pdf
Shahen, S. G., Abido, A. I., Alkharpotly, A. A., Radwan, F. I., & Yousry, M. M. (2019). Seaweed extract and indoleacetic acid foliar application in relation to the growth performance of sweet pepper grown under net house conditions. Journal of the Advances in Agricultural Researches, 24(3), 354-368. https:// jalexu.journals.ekb.eg/article_163462.html
Shukla, P. P., Mantin, E. G., Adil, M., Bajpai, S., Critchley, A. T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10(6 55), 1-22. https://www.frontiersin.org/articles/10.3389/fpls.2019.00655/full
Snyder, R. (2016). Guía del cultivo de tomate en invernaderos. http://msucares.com/espanol/pubs/p2419.pdf
Vega, W. J. (2016). Evaluación del rendimiento de pimiento (Capsicum annuum) mediante la aplicación edáfica de extractos de algas marinas (Ascophyllum nodosum), ácidos húmicos y fúlvicos en la zona de Quevedo. [Tesis de la Facultad de Ciencias Agrarias, Universidad Técnica Estatal de Quevedo]. https://repositorio. uteq.edu.ec/bitstream/43000/1915/1/T-UTEQ-0034.pdf
Yildirim, M. (2010). Water management in coastal areas with low quality irrigation water for pepper growth. Journal of Coastal Research, 26(5(265)), 869-878. https://bioone.org/ journals/journal-of-coastal-research/volume-18/issue-(7)/ JCOASTRES-D-09-00038.1/Water-Management-in-Coastal- Areas-with-Low-Quality-Irrigation-Water/10.2112/ JCOASTRES-D-09-00038.1.short
Yildiztekin, M., Tuna, A. L., & Kaya, C. (2018). Physiological effects of the brown seaweed (Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biologica Hungarica, 69(3), 325-335. https://pubmed.ncbi.nlm.nih.gov/30257582/
##plugins.facebook.comentarios##
Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0.
Derechos de autor 2023 José Eladio Monge Pérez, Julio César Loáiciga Arias, Michelle Loría Coto