Resumen
El objetivo de esta investigación fue determinar el efecto de la fuente de carbohidratos y la especie de leguminosa sobre la calidad de la fibra, producción de gas y la concentración de metano en ensilados. El experimento se realizó entre agosto 2015 y febrero 2016. Se utilizó un diseño factorial 4x4, con cuatro leguminosas (Vigna unguiculata, Arachis pintoi, Cratylia argentea, Erythrina poeppigiana) y 4 fuentes de carbohidratos (melaza de caña de azúcar, pulpa de cítricos deshidratada, maíz molido y guineo cuadrado [GC]). Se utilizaron microsilos, que fueron almacenados por 50 días y en la apertura se midieron los indicadores de interés. El análisis de la información se realizó por medio de modelos lineales y mixtos. Se determinó que en promedio las mezclas ensiladas con leguminosas arbustivas generaron mayor contenido de fibra, aunque de menor calidad, debido a un mayor contenido de lignina en comparación con los ensilados de leguminosas herbáceas. Por otra parte, el GC fue la fuente de carbohidratos que alteró la cantidad y calidad de la fibra en los ensilados, debido al mayor contenido de FDN y lignina del fruto. Estas variaciones en la calidad y cantidad de la fibra influenciaron la producción de gas (ml/gMS), mientras que la producción de metano (L/kgMS) en el gas fue afectada por la calidad de la fibra y el contenido de taninos condensados en el forraje. En conclusión, la especie y la fuente de carbohidratos generan diferencias en la cantidad y calidad de la fibra, lo que a su vez repercute sobre la producción de gas y concentración de metano de los ensilados de leguminosas. Es así como los ensilados de Arachis o Erythrina combinados con maíz fueron los de menor producción y concentración de metano.
Citas
Abdalla, A. L., Louvandini, H., Sallam, S. M. A. H., da Silva Bueno, I. C., Tsai, S. M. y de Oliveira Figueira, A, V. 2012. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Trop. Anim. Health. Prod. 44(5): 953-964.
Aboul-Enein, A. M., Salama, Z. A., Gaafar, A. A., Aly, H. F., Abou-Elella, F. y Ahmed, H. A. 2016. Identification of phenolic compounds from banana peel (Musa paradaisica L,) as antioxidant and antimicrobial agents. J. Chem. Pharm. Res. 8(4): 46-55.
Alayón-Gamboa, J. A., Jiménez-Ferrer, G., Piñeiro-Vázquez, Á. T., Canul-Solís, J., Albores-Moreno, S., Villanueva-López, G. y Ku-Vera, J. C. 2018. Estrategias de mitigación de gases de efecto invernadero en la ganadería. Agroproductividad. 11(2):
Archimède, H., Eugène, M., Magdeleine, C. M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. y Doreau, M. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci.Tech. 166: 59-64.
Archimède, H., Rira, M., Barde, D. J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Periacarpin, F., Fleury, J., Rochette, Y., Morgavi, P. y Doreau, M. 2016. Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep. J. Anim. Physiol. Anim. Nutr. 100(6): 1149-1158.
Baloyi, J. J., Ngongoni, N. T., Topps, J. H., Acamovic, T. y Hamudikuwanda, H. 2001. Condensed tannin and saponin content of Vigna unguiculata (L,) Walp, Desmodium uncinatum, Stylosanthes guianensis and Stylosanthes scabra grown in Zimbabwe. Trop. Anim. Health. Prod. 33(1): 57-66.
Bello-Lara, J. E., Balois-Morales, R., Sumaya-Martínez, M. T., Juárez-López, P., Rodríguez-Hernández, A. I., Sánchez-Herrera, L. M. y Jiménez-Ruíz, E. I. 2014. Extracción y caracterización reológica de almidón y pectina en frutos de plátano 'Pera' (Musa ABB). Rev Mex Cienc Agr. 5(SPE8): 1501-1507.
Bernal, L. C., Avila, P., Ramírez, G., Lascano, C., Tiemann, T. y Hess, H. 2008. Effect of Calliandra calothyrsus, Flemingia macrophylla, Cratylia argentea and Vigna unguiculata silage and hay on in vitro gas production. Archiv. Latin. Prod. Anim. 16(3): 97-103.
Bernal, L., Ávila, P., Ramírez, G. y Lascano, C. 2008. Efecto de la Suplementación con heno de Calliandra calothyrsus y Vigna unguiculata sobre la producción de leche en bovinos en Colombia. Archiv. Latin. Prod. Anim. 16(3): 104-109.
Bonilla, J. D., Noboa-Jiménez L., Portuguez-Molina, V., Quinto-Ureña, F. y Rojas-Gutiérrez, J. J. 2020. Metanogénesis microbiana en animales poligástricos. Nutr. Anim. Trop. 14(1): 36-49.
Bouchard, K. 2011. Methane emissions and rumen microbial changes in steers fed condensed tannin containing diets under western Canadian conditions. Tesis PhD. Universidad de Manitoba, Winnipeg, Canadá.
Buddle, B. M., Denis, M., Attwood, G. T., Altermann, E., Janssen, P. H., Ronimus, R. S., Pinares-Patiño, C. S., Muetzel S. y Wedlock, D. N. 2011. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet J. 188(1): 11-17.
Castro-Montoya, J. M. y Dickhoefer, U. 2020. The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Anim. Feed Sci. Technol. 269: 114641.
Chaikong, C., Saenthaweesuk, N., Sadtagid, D., Intapim, A. y Khotakham, O. 2017. Local silage additive supplementation on fermentation efficiency and chemical components of leucaena silage. Livest. Res. Rur. Dev. 29(6): 114.
Combs, D. 2014. Using in vitro total-tract NDF digestibility in forage evaluation. Focus on Forage. 15(2): 1-3.
Delgado, D. C., Galindo, J., González, R., Savón, L., Scull, I., González, N. y Marrero, Y. 2010. Potential of tropical plants to exert defaunating effects on the rumen and to reduce methane production, In: Odongo N. E., Garcia M, y Viljoen G. J, Sustainable Improvement of Animal Production and Health, Food and Agriculture Organization of the United Nations, Rome, Italy, 49-54
Detmann, E., Valadares Filho, S. C., Pina, D. S., Henriques, L. T., Paulino, M. F., Magalhães, K. A., ... y Chizzotti, M. L. 2008. Prediction of the energy value of cattle diets based on the chemical composition of the feeds under tropical conditions. Anim. Feed Sci. Technol. 143(1-4): 127-147.
Dijkstra, J., Oenema, O., y Bannink, A. (2011). Dietary strategies to reducing N excretion from cattle: implications for methane emissions. Curr Opin Environ Sustain. 3(5), 414-422
Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., y Robledo C.W. InfoStat versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.
Dos Santos, N. D. F. A. (2007). Valor nutritivo de Cratylia argentea para suplementação de ruminantes na Amazônia. Tesis MSc. Universidade Federal do Pará, Brasil.
Dufour, D., Gibert, O., Giraldo, A., Sanchez, T., Reynes, M., Pain, J. P., González, A., Fernández, A. y Díaz, A. (2009). Differentiation between cooking bananas and dessert bananas, 2, Thermal and functional characterization of cultivated Colombian Musaceae (Musa sp.). J. Agr. Food Chem. 57(17): 7870-7876.
Duncan, A. V. M. 2014. Reduction of Enteric Methane Production: A Nutritional Approach. Tesis Ph.D. Universidad de Carolina del Norte A&T. Greensboro, Estados Unidos.
Franzel, S., Carsan, S., Lukuyu, B., Sinja, J. y Wambugu, C. 2014. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Curr. Opin. Env. Sust. 6: 98-103.
Goel, G. y Makkar, H. P. 2012. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health. Prod. 44(4): 729-739.
Grainger, C. y Beauchemin, K. A. 2011. Can enteric methane emissions from ruminants be lowered without lowering their production. Anim. Feed Sci. Technol. 166: 308-320.
Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGinn, S. M., Waghorn, G. C. y Eckard, R. J. 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 89(2): 241-251.
Happi-Emaga, T., Robert, C., Ronkart, S. N., Wathelet, B. y Paquot, M. 2008. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresour. Technol. 99(10): 4346-4354.
Hassanat, F., Gervais, R., Massé, D. I., Petit, H. V. y Benchaar, C. 2014. Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage-or alfalfa silage-based diets. J. Dairy Sci. 97(10): 6463-6474.
Heinritz, S, N., Martens, S. D., Avila, P. y Hoedtke, S. 2012. The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Anim. Feed Sci. Technol. 174(3-4): 201-210.
Hindrichsen, I, K., Wettstein, H. R., Machmüller, A., Jörg, B. y Kreuzer, M. 2005. Effect of the carbohydrate composition of feed concentratates on methane emission from dairy cows and their slurry. Environ. Monit. Asses. 107(1): 329-350.
Hindrichsen, I, K., Wettstein, H. R., Machmüller, A., Soliva, C. R., Bach Knudsen, K. E., Madsen, J. y Kreuzer, M. 2004. Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci. 84(2): 265-276.
Hiriart, M. 2008. Ensilados, Procesamiento y Calidad, Editorial Trillas. 2da Ed. México.
Jackson, F. S., Barry, T. N., Lascano, C. y Palmer, B. 1996. The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes. J. Sci. Food Agri. 71(1): 103-110.
Jiao, H. P., Yan, T., McDowell, D. A., Carson, A. F., Ferris, C. P., Easson, D. L. y Wills. D. 2013. Enteric methane emissions and efficiency of use of energy in Holstein heifers and steers at age of six months. J. Anim. Sci. 91(1): 356-362.
Kamalak, A. y Canbolat, O. 2010. Determination of nutritive value of wild narrow-leaved clover (Trifolium angustifolium) hay harvested at three maturity stages using chemical composition and in vitro gas production. Trop. Grassl. 44(2): 128-133.
Kexian, Y., Lascano, C. E., Kerridge, P. C. y Avila Vargas, P. 1998. The effect of three tropical shrub legumes on intake rate and acceptability by small ruminants. Trop. Grassl. 20(3): 31-35.
Khamseekhiew , B., Liang, J. B., Wong, C. C. y Jalan, Z. A. 2001. Ruminal and intestinal digestibility of some tropical legume forages. Asian. Australas. J. Anim. Sci. 14(3): 321-325.
Kongmanila, D. y Ledin, I. 2009. Chemical composition of some tropical foliage species and their intake and digestibility by goats. Asian. Australas. J. Anim. Sci. 22(6): 803-811.
Kongmanila, D., Bertilsson, J., Ledin, I. y Wredle, E. 2012. Utilisation of some Erythrina species and biomass production of Erythrina variegata. Livest. Res. Rural. Dev. 24(8):1-8.
Kongmanila, D., Preston, T. R, y Ledin, I. 2007. Chemical composition, digestibility and intake of some tropical foliage species used for goats. Tesis de M.Sc. MEKARN-Swedish University of Agricultural Sciences, Vietnam.
Krizsan, S. J. y Huhtanen, P. 2013. Effect of diet composition and incubation time on feed indigestible neutral detergent fiber concentration in dairy cows. J. Dairy Sci. 96(3): 1715-1726.
Lascano, C. E. y Cárdenas, E. 2010. Alternatives for methane emission mitigation in livestock systems. Rev. Bras. de Zootec. 39: 175-182.
Lascano, C. E. 1994. Nutritive value and animal production of forage Arachis, In: Kerridge, P. C. y Hardy, B. Biology and agronomy of forage Arachis. Centro Internacional de Agricultura Tropical: Cali, Colombia 109-121.
Lopez, J., Tejada, I., Vásquez, C., Garza, J. D. D. y Shimada, A. 2004. Condensed tannins in humid tropical fodder crops and their in vitro biological activity: Part 1. J. Sci. Food Agri. 84(4): 291-294.
López-Herrera, M. y Briceño-Arguedas, E. 2016. Efecto de la frecuencia de corte y la precipitación en el rendimiento de Cratylia argentea orgánica. Nutr. Anim. Trop. 10(1): 24-44.
López-Herrera, M. 2019. Informe final del proyecto 739-B7-069 “Degradabilidad in vitro del almidón en diferentes subproductos agrícolas e impacto sobre la producción de metano y parámetros de fermentación ruminal”. Universidad de Costa Rica. Costa Rica 11p.
López-Herrera, M., Rojas-Bourrillon, A. y Castillo-Umaña, M. 2019. Efecto de la sustitución de King grass (Cenchrus purpureus) por yuca (Manihot esculenta crantz) sobre la calidad nutricional del ensilaje. Nutr. Anim. Trop. 13(2): 21-42.
López-Herrera, M., Rojas-Bourrillon, A. y Zumbado Ramírez, C. 2017. Características nutricionales y fermentativas de ensilados de pasto Camerún con plátano Pelipita1. Agron. Mesoam. 28(3): 629-642.
Meale, S. J., Chaves, A.V., Baah, J. y McAllister, T. A. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian. Australas. J. Anim. Sci. 25(1): 86 – 91.
Mohapatra, D., Mishra, S. y Sutar, N. 2010. Banana and its by-product utilization: an overview. J.Sci. Ind. Res. 69(5): 323 – 329.
Olivo, P, M., Santos, G. T. D., Ítavo, L. C. V., Silva Junior, R. C. D., Leal, E. S. y Prado, R. M. D. 2017. Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique. Acta Sci. Anim. Sci. 39(3): 289-295.
Pellikaan, W. F., Stringano, E., Leenaars, J., Bongers, D. J., van Laar-van Schuppen, S., Plant, J. y Mueller-Harvey, I. 2011. Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evaluation system (APES). Anim. Feed Sci. Technol. 166: 377-390.
Pineda Cordero, L., Chacón Hernández, P. y Boschini Figueroa, C. 2016. Evaluación de la calidad del ensilado de pasto estrella africana (Cynodon nlemfluensis) mezclado con tres diferentes aditivos. Agron. Costarr. 40(1): 11-27.
Pootaeng-on, Y., Kimsri, N., Sooksom, S., Tangchaitam, S. y Chiangmai, P. N. 2015. Condensed tannins in some tropical legumes residue, Sci. Eng. Health Stud. 9(1):51-60.
Poppi, D. P., Quigley, S. P., Silva, T. A., C, C. D. y McLennan, S. R. 2018. Challenges of beef cattle production from tropical pastures. Rev. Bras. Zootec. 47: e20160419
Pugalenthi, M., Vadivel, V., Gurumoorthi, P. y Janardhanan, K. 2004. Comparative nutritional evaluation of little known legumes, Tamarindus indica, Erythrina indica and Sesbania bispinosa. Trop. Subtrop. Agroecosyst. 4(3): 107-123.
Raffrenato, E. y Erasmus, L. J. 2013. Variability of indigestible NDF in C3 and C4 forages and implications on the resulting feed energy values and potential microbial protein synthesis in dairy cattle. S. Afr. J. Anim. Sci. 43(5): S98-S102.
Ravi, I., y Mustaffa, M. M. 2013. Starch and amylose variability in banana cultivars. Indian J. Plant Physiol. 18(1): 83-87.
Rojas-Cordero, D., Alpízar-Naranjo, A., Castillo-Umaña, M, Á. y López-Herrera, M. 2021. Efecto de la inclusión de Musa sp, sobre la conservación como ensilaje de Trichantera gigantea. Pastos y Forrajes, 44(1).
Sajilata, M. G., Singhal, R. S. y Kulkarni, P. R. 2006. Resistant starch–a review. Compr. Rev. Food. Sci. F. 5(1): 1-17.
Santos, G, T., Lima, L. S., Schogor, A. L. B., Romero, J. V., De Marchi, F. E., Grande, P. A. y Kazama, R. 2014. Citrus pulp as a dietary source of antioxidants for lactating Holstein cows fed highly polyunsaturated fatty acid diets. Asian. Australas. J. Anim. Sci. 27(8): 1104.
Sobalvarro-Mena, J. L., Elizondo-Salazar, J. A., y Rojas-Bourillón, A. 2020. La producción de gas in vitro para estimar la energía neta de lactancia. Agron. Mesoam. 31(2): 311-328.
Sousa, D.O. 2017. Alteration of fiber digestibility for ruminants: effects on intake, performance, and ruminal ecosystem. Tesis Ph.D. Universidad de São Paulo. Brasil.
Stürm, C. D., Tiemann, T. T., Lascano, C. E., Kreuzer, M. y Hess, H. D. 2007. Nutrient composition and in vitro ruminal fermentation of tropical legume mixtures with contrasting tannin contents. Anim. Feed Sci. Technol. 138(1): 29-46.
Tiemann, T. T., Lascano, C. E., Wettstein, H. R., Mayer, A. C., Kreuzer, M. y Hess, H. D. 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal. 2(5): 790-799.
Van Soest, P. V., Robertson, J. B, y Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10): 3583-3597.