Resumen
La resistencia bacteriana a distintos antibióticos ha generado interés en la búsqueda de alternativas para su utilización. El avance de la nanotecnología ha permitido desarrollar nanopartículas de diferentes metales, entre ellos la plata. Con la variación en tamaño y área superficial, estas nanopartículas presentan mayor efectividad y menor toxicidad que los compuestos de plata utilizados con anterioridad. Las nanopartículas de plata (AgNPs) actúan contra bacterias, hongos, garrapatas y larvas; sin embargo, la mayoría de los ensayos se han realizado in vitro. Existen diferentes métodos de síntesis de AgNPs, lo cual genera variaciones en los resultados de los ensayos, dificultando la recomendación de un rango de dosis adecuado según la información ya existente. El objetivo de esta revisión fue valorar las AgNPs como agente mejorador en los sistemas productivos de animales de interés zootécnico, definiendo la relación entre la concentración aplicada y la respuesta de diferentes agentes que afectan la salud de los animales. Se consultaron un total de 142 artículos científicos en diversas bases de datos, los cuales se agruparon en acuicultura, avicultura, bacterias, hongos, garrapatas y mosquitos. En base a este estudio, se recomienda realizar ensayos in vivo para asegurar que la actividad que se le atribuye a las AgNPs se mantenga en el uso diario en la producción animal, así como repetir estudios con los mismos métodos de síntesis para unificar y comparar la información.
Citas
Abdelamid, A., M. Mabrouk y H. Ayoub. 2020. Immune and antioxidative effects of dietary silver nanoparticles on growth of nile tilapia, Oreochromis niloticus challenged with Aeromonas hydrophila. Journal of Animal and Poultry Production, 11 (12): 495-501. doi: 10.21608/jappmu.2020.161169
Abou-Khadra, S., A. El-Amin, S. Al-Otaibi, y H. Fahmy. 2021. The antibacterial and antibiofilm activities of silver nanoparticles on Staphylococci isolates from cow milk. Slovenian Veterinary Research, 58 (Suppl 24): 133–142. doi: 10.26873/SVR-1434-2021 4
Adamek, D., J. Śliwiński, T. Ostaszewska, M. Fajkowska, M. Rzepkowska, Y. Meguro y K. Marzecki. 2018. Effect of copper and silver nanoparticles on trunk muscles in Rainbow trout (Oncorhyncus mykiss, Walbaum, 1792). Turkish Journal of Fisheries and Aquatic Sciences. 18: 781-788. doi: 10.4194/1303-2712-v18_6_04
Adegbeye, M., M. Elghandour, A. Barbosa-Pliego, J. Cedillo, M. Mellado, P. Kanth y A. Salem. 2019. Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science, 78: 29-37. doi: 10.1016/j.jevs.2019.04.001
Ahluwalia, V., S. Elumalai, V. Kumar, S. Jumar y R. Sangwan. 2018. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microbial Pathogenesis, 114: 402-408. doi: 10.1016/j.micpath.2017.11.052
Ahmad, N., Fozia, M. Jabeen, Z. Ul Haq, I. Ahmad, A. Wahab, Z. U. Islam, R. Ullah, A. Vari, M. M. Abdel-Daim, F. M. El-Demerdash, M. Y. Khan. 2022. Green fabrication of silver nanoparticles using Euphorbia serpens kunth aqueous extract, their characterization, and investigation of its in vitro antioxidative, antimicrobial, insecticidal, and cytotoxic activities. BioMed Research International, 2022:5562849. doi: 10.1155/2022/5562849.
Ahmadi, F. 2012. Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes, and blood parameters in broiler chicks. Pakistan Veterinary Journal, 32 (3): 325-328.
Akintelu, S. y A. Folo-runso. 2019. Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona muricata leaf extracts. Journal of Nanotechnology: Nanomedicine & Nanobiotechnology, 6 (22): 1-6. doi: 10.24966/NTMB-2044/100022
Ali. H., A. Emam, E. Hefny, N. Koraney, A. Mansour, A. Salama, S. Ali, S. Aboolo y M. Shahein. 2021. Silver nanoparticles enhance the effectiveness of traditional antibiotics against S. aureus causing bovine mastitis within the safety limit. Journal of Nanoparticle Research, 23: 243. doi: 10.1007/s11051-021-05349-4
Ali, I., T. Qiang, N. Ilahi, M. Adnan y W. Sajjad. 2018. Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens. International Journal of Biosciences, 13 (5): 1-15. doi: 10.12692/ijb/13.5.1-15
Ali, Z., B. Bhaskar y K. Sudheesh. 2019. Descriptive statistics: Measures of central tendency, dispersion, correlation, and regression. Airway, 2: 120-125. doi: 10.4103/ARWY.ARWY_37_19
Al-Sultan, S., A. Hereba, K. Hassanein, S. Abd-Allah, U. Mahmoud y S. Abdel-Raheem. 2022. The impact of dietary inclusion of silver nanoparticles on growth performance, intestinal morphology, caecal microflora, carcass traits, and blood parameters of broiler chickens. Italian Journal of Animal Science, 21 (1): 967-978. doi: 10.1080/1828051X.2022.2083528
Alsamhary, K. 2020. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi Journal of Biological Sciences, 27: 2185-2191. doi: 10.1016/j.sjbs.2020.04.026
Alshehri, M., A. Aziz, S. Trivedi y C. Panneerselvam. 2020. Efficacy of chitosan silver nanoparticles from shrimp-shell wastes against major mosquito vectors of public health importance. Green Processing and Synthesis, 9: 675–684. doi: 10.1515/gps-2020-0062
Álvarez-Cirerol, F., M. López-Torres, E. Rodríguez-León, C. Rodríguez-Beas, A. Martínez-Higuera, H. Lara, S. Vergara, M. Arellano-Jiménez, E. Larios-Rodríguez, M. Martínez-Porchas, E De-la-Re-Vega y R. Iñiguez-Palomares. 2019. Silver nanoparticles synthesized with Rumex hymenosepalus: A strategy to combat early mortality syndrome (EMS) in a cultivated white shrimp. Journal of Nanomaterials. doi: 10.1155/2019/82146755
Amala, V. y R. Krishnaveni. 2022. Biogenic Synthesis of silver nanoparticles: Characterizations, antibacterial and larvicidal bioassay. Materials Today: Proceedings, 49: A7-A11. doi: 10.1016/j.matpr.2021.12.388
Andleeb, S., F. Tariq, A. Muneer, T. Nazir, B. Shahid, Z. Latif, S. Abbasi, I. Haq, Z. Majeed, S. Khan, S. Khan, T. Khan y D. Al Farraj. 2020. In vitro bactericidal, antidiabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesized silver nanoparticles using Allium sativum clove extract incubated at various temperatures. Green Processing and Synthesis, 9: 538-553. doi: 10.1515/gps-2020-0051
Arya, A., K. Gupta, T. Chundawat y D. Vaya. 2018. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorganic Chemistry and Applications, 2018, 7879403: 1-9. doi: 10.1155/2018/7879403
Ashour, M., S. Hafez, S. Habeeb, A. El Sayed y N. Allam. 2021. Comparative studies on the effect of some citrus oils and their silver nitrate nanoparticles formulation on camels tick, Hyalomma dromedarii (Acari: Ixodidae). Egyptian Academic Journal of Biological Sciences, 14 (4): 145-158. doi: 10.21608/EAJBSA.2021.207358
Avinash, B., R. Venu, M. Alpha, K. Srinivasa, C. Srilatha y T. Prasad. 2017. In vitro evaluation of acaricidal activity of novel green silver nanoparticles against deltamethrin resistance Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 237: 130-136. doi: 10.1016/j.vetpar.2017.02.017
Aygün, A., F. Gülbagca, M. Nas, M. Alma, M. Calimli, B. Ustaoglu, Y. Altunoglu, M. Baloglu, K. Cellat y F. Sen. 2020. Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology. Journal of Pharmaceutical and Biomedical Analysis, 179: 1-9. doi: 10.1016/j.jpba.2019.113012
Awaad, H., K. Moustafa, S. Zoulfakar, M. Elhalawany, F. Mohammed, R. El-Refay y E. Morsy. 2021. The role of silver nanoparticles in the reluctance of colisepticemia in broiler chickens. Journal of Applied Poultry Research, 30 (2): 1-15. doi: 10.1016/j.japr.2021.100155
Bąkowski, M., B. Kiczorowska, W. Samolińska, R. Klebaniuk y A. Lipiec. 2018. Silver and zinc nanoparticles in animal nutrition- A review. Annals of Animal Science, 18 (4): 879-898. doi: 10.2478/aoas-2018-0029
Barabadi, H., F. Mojab, H. Vahidi, B. Marashi, N. Talank, O. Hosseini y M. Saravanan. 2021. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communications, 129: 1-10. doi: 10.1016/j.inoche.2021.108647
Barbosa, V., J. Souza, V. Alvino, M. Meneghetti, P. Florez-Rodriguez, E. Moreira, G. Paulino, M. Landell, I. Basílio-Júnior, T. do Nascimento, L. Grillo y C. Dornelas. 2019. Biogenic synthesis of silver nanoparticles using Brazilian propolis. Biotechnology Progress, 35: e2888. https://doi.org/10.1002/btpr.2888
Baruah, D., R. Yadav, A. Yadav y A. Das. 2019. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Journal of Photochemistry & Photobiology, 201: 1-9. doi: 10.1016/j.jphotobiol.2019.111649
Benakashani, F., A. Allafchian y S. Jalali. 2017. Green synthesis, characterization and antibacterial activity of silver nanoparticles from root extract of Lepidium draba weed. Green Chemistry Letters and Reviews, 10 (4): 324-330. doi: 10.1080/17518253.2017.1363297
Bhagat, M., R. Anand, R, Datt, V. Gupta y S. Arya. 2019. Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. Journal of Inorganic and Organometallic Polymers and Materials, 29: 1039–1047. doi: 10.1007/s10904-018-0994-5
Bolandi, N., S. Hashemi, D. Davoodi, B. Dastar, S. Hassani y A. Ashayerizadeh. 2021. Performance, intestinal microbial population, immune and physiological responses of broiler chickens to diet with different levels of silver nanoparticles coated on zeolite. Italian Journal of Animal Science, 20 (1): 497-504. doi: 10.1080/1828051X.2021.1892546
Buszewski, B. V. Railean-Plugaru, P. Pomastowski, K. Rafińska, M. Szultka-Mlynska, P. Golinska, M. Wypij, D. Laskowski y H. Dahm. 2018. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of Microbiology, Immunology and Infection, 51: 45-54. doi: 10.1016/j.jmii.2016.03.002
Chandhirasekar, K., A. Thendralmanikandan, P. Thangavelu, B. Nguyen, T. Nguyen, K. Sivashanmugan, A. Nareshkumar y V. Nguyen. 2021. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Materials Letters, 287: 1-5. doi: 10.1016/j.matlet.2020.129265
Dehkordi, S., F. Housseinpour y A. Kahrizangi. 2011. An in vitro evaluation of antibacterial effect of silver nanoparticles on Staphylococcus aureus isolates from bovine subclinical mastitis. African Journal of Biotechnology, 10 (52): 451974C35705, 10795-10797. doi: 10.5897/AJB11.1499
Dethloff, G., R. Naddy y W. Gorsuch. 2007. Effects of sodium chloride on chronic silver toxicity to early life stages of rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 26 (8): 1717–1725. doi: 10.1897/06-539R.1
Devi, T., D. Mohanta y M. Ahmaruzzaman. 2019. Biomass derived activated carbon loaded silver nanoparticles: An effective nanocomposite for enhanced solar photocatalysis and antimicrobial activities. Journal of Industrial and Engineering Chemistry, 76: 160-172. doi: 10.1016/j.jiec.2019.03.032
Dosoky, W., M. Fouda, A. Alwan, N. Abdelsalam, A. Taha, R. Ghareeb, M. El-Assar y A. Khafaga. 2021. Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Scientific Reports, 11 (4166): 1-15. doi: 10.1038/s41598-021-83753-5
Ejaz, K., H. Sadia, G. Zia, S. Nazir, A. Raza, S. Ali y T. Iqbal. 2017. Biofilm reduction, cell proliferation, anthelmintic and cytotoxicity effect of green synthesized silver nanoparticle using Artemisia vulgaris extract. IET Nanobiotechnology, 12 (1): 71-77. doi: 10.1049/iet-nbt.2017.0096
El-Abd, N., R. Hamouda, T. Al-Shaikh y M. Abdel-Hamid. 2022. Influence of biosynthesized silver nanoparticles using red alga Corallina elongata on broiler chick´s performance. Green Processing and Synthesis, 11 (1): 238-253. doi: 10.1515/gps-2022-0025
El-Aziz, N., A. Ammar, E. El-Naenaeey, H. El, A. Elazazy, A. Herny, A. Shaker y E. Eldesoukey. 2021. Antimicrobial and antibiofilm potentials of cinnamon oil and silver nanoparticles against Streptococcus agalactiae isolated from bovine mastitis: New adventures for countering resistance. BMC Veterinary Research, 17 (136): 1-14. doi: 10.1186/s12917-021-02842-9
El-Batal, A., F. Mosallam y G. El-Sayyad. 2018. Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. Journal of Cluster Science, 29: 1003–1015. doi: 10.1007/s10876-018-1411-5
Elez, R., I. Elsohaby, N. El-Gazzar, H. Tolba, E. Abdelfatah, S. Abdellatif, A. Mesalam y A. Tahoun. 2021. Antimicrobial resistance of Salmonella enteritidis and Salmonella typhimurium isolated from laying hens, table eggs, and humans with respect to antimicrobial activity of biosynthesized silver nanoparticles. Animals, 11: 3554. doi: 10.3390/ani11123554
Elgendy, M., Mohamed, S., Mohamed, A., Eissa, A., El-Adawy, M. y A. Seida. 2021. Antibacterial activity of silver nanoparticles against antibiotic-resistant Aeromonas veronii infections in Nile tilapia, Oreochromis niloticus (L.), in vitro and in vivo assay. Aquaculture Research, 53: 901-920. doi: 10.1111/are.15632
El-Houseiny, W., M. Mansour, W. Mohamed, N. Al-Gabri, A. El-Sayed, D. Altohamy y R. Ibrahim. 2021. Silver nanoparticles mitigate Aeromonas hydrophila-induced immune suppression, oxidative stress, and apoptotic and genotoxic effects in Oreochromis niloticus. Aquaculture, 535: 1-14. doi: 10.1016/j.aquaculture.2021.736430
Elkloub, K., M. Moustafa, A. Ghazalah y A. Rehan. 2015. Effect of dietary nanosilver on broiler performance. International Journal of Poultry Science, 14 (3): 177-182. doi: 10.3923/ijps.2015.177.182
Eren, A. y M. Baran. 2019. Green synthesis, characterization, and antimicrobial activity of silver nanoparticles (AgNPs) from maize (Zea mays L.) Applied Ecology and Environmental Research, 17 (2): 4097-4105. doi: 10.15666/aeer/1702_40974105
Essawy, E., M. Abdelfattah, M. El-Matbouli y M. Saleh. 2021. Synergistic effect of biosynthesized silver nanoparticles and natural phenolic compounds against drug-resistant fish pathogens and their cytotoxicity: An in vitro study. Marine Drugs, 19 (22): 1-16. doi: 10.3390/md19010022
Fabrega, J., S. Luoma, C. Tyler, T. Galloway y J. Lead. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environment International, 37 (2): 517-531. doi: 10.1016/j.envint.2010.10.012
Faisal, S., Abdullah, S. Shah, S. Shah, M. Akbar, F. Jan, I. Haq, M. Baber, K. Aman, F. Zahir, F. Bibi, F. Syed, M. Iqbal, S. Jawad y S. Salman. 2020. In vitro biomedical and photo-catalytic application of bio-inspired Zingiber officinale mediated silver nanoparticles. Journal of Biomedical Nanotechnology, 16: 1-13. doi: 10.1166/jbn.2020.2918
Farhadi, L., M. Mohtashami, J. Saeidi, M. Azimi-nezhad, G. Taheri, R. Khojastech-Taheri, A. Rezagholizade-Shirvan, E. Shamloo y A. Ghasemi. 2022. Green synthesis of chitosan coated silver nanoparticle, characterization, antimicrobial activities, and cytotoxicity analysis in cancerous and normal cell lines. Journal of Inorganic and Organometallic Polymers and Materials, 32: 1637-1649. doi: 10.1007/s10904-021-02208-6
Fatima, R., M. Priya, L. Indurthi, V. Radhakrishnan y R. Sudhakaran. 2020. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microbial Pathogenesis, 138: 103780. doi: 10.1016/j.micpath.2019.103780
Fondevila, M., R. Herrer, M. Casallas, L. Abecia y J. Ducha. 2009. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology, 150 (3-4): 259-269. doi: 10.1016/j.anifeedsci.2008.09.003
Fouda, A., M. Awad, Z. AL-Faifi, M. Gad, A. Al-Khalaf, R. Yahya y M. Hamza. 2022. Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts, 12 (462): 1-19. doi: 10.3390/catal12050462
Fouda, M., W. Dosoky, N. Radwan, N. Abdelsalam, A. Taha y A. Khafaga. 2021. Oral administration of silver nanoparticles-adorned starch as a growth promotor in poultry: Immunological and histopathological study. International Journal of Biological Macromolecules, 187: 830-839. doi: 10.1016/j.ijbiomac.2021.07.157
Garibo, D., E. Nefedova, N. Shkil, R. L. Vazquez-Gomez, A. Pestryakov, N. Bogdanchikova. 2020. Silver nanoparticles targeting the drug resistance problem of Streptococcus dysgalactiae: susceptibility to antiobiotics and efflux effect. International Journal of Molecular Sciences, 23 (11), 6024.
Gliga, A., S. Skoglund, I. Wallinder, B. Fadeel y H. Karlsson. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology, 11: 1-17. doi: 10.1186/1743-8977-11-11
Govindan, L., S. Anbazhagan, A. Altemimi, K. Lakshminarayanan, S. Kuppan, A. Pratap-Singh, y M. Kandasamy. 2020. Efficacy of antimicrobial and larvicidal activities of green synthesized silver nanoparticles using leaf extract of Plumbago auriculata Lam. Plants, 9 (1577): 1-13. doi: 10.3390/plants9111577
Haghighat, F., Y. Kim, I. Sourinejad, I. Yu, y S. Johari. 2021. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere, 262 (127805): 1-11. doi: 10.1016/j.chemosphere.2020.127805
Hamed, H. y Abdel-Tawwab. 2021. Dietary pomegranate (Punica ganatum) peel mitigated the adverse effects of silver nanoparticles on the performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia fingerlings. Aquaculture, 540. doi: 10.1016/j.aquaculture.2021.736742
Hassanien, A. y U. Khatton. 2019. Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Physica B: Condensed Matter, 554: 21-30. doi: 10.1016/j.physb.2018.11.004
Horky, P., S. Skalickova, D. Baholet y J. Skladanka. 2018. Nanoparticles as a solution for eliminating the risk of mycotoxins. Review. Nanomaterials, 8: 727. doi: 10.3390/nano8090727.
Huq, M. y S. Akter. 2021. Bacterial mediated rapid and facile synthesis of silver nanoparticles and their antimicrobial efficacy against pathogenic microorganisms. Materials, 14 (2615): 1-15. doi: 10.3390/ma14102615
Hussein, H., D. Syamsumir, S. Radzi, J. Siong, N. Zin y M. Abdullah. 2020. Phytochemical screening, metabolite profiling, and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioprocess, 7 (39): 1-17. doi: 10.1186/s40643-020-00322-w
Ibrahim, A. 2021. Antagonistic effect of different selenium type on green synthesized silver nanoparticle toxicity on Oreochromis niloticus: oxidative stress biomarkers. Environmental Science and Pollution Research, 28: 21900-21909. doi: 10.1007/s11356-020-12040-z
Imani, M., M. Halimi y H. Khara. 2015. Effects of silver nanoparticles (AgNPs) on hematological parameters of rainbow trout, Oncorhynchus mykiss. Comparative Clinical Pathology, 24: 491–495. doi: 10.1007/s00580-014-1927-5
Jayaseelan, C. y A. Rahuman. 2012. Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae). Parasitology Research, 111: 1369–1378. doi: 10.1007/s00436-011-2559-1
Jayaseelan, C., A. Rahuman, G. Rajakumar, T. Santhoshkumar, A. Kirthi, S. Marimuthu, A. Bagavan, C. Kamaraj, A. Zahir, G. Elango, K. Velayutham, K. Rao, L. Karthik y S. Raveendran. 2012. Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitology Research, 111: 921–933. doi: 10.1007/s00436-011-2473-6
Ji, H., S. Zhou, Y. Fu, Y. Wang, J. Mi, T. Lu, X. Wang y C. Lü. 2020. Size-contollable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. Materials Science & Engineering C, 110: 110735. doi: 10.1016/j.msec.2020.110735
Jogaiah, S., M. Kurjogi, M. Abdelrahman, N. Hanumanthappa y L. Tran. 2019. Ganoderma applanatum-mediated green synthesis of silver nanoparticles: Structural characterization and in vitro and in vivo biomedical and agrochemical properties. Arabian Journal of Chemistry, 12: 1108-1120. doi: 10.1016/j.arabjc.2017.12.002
Johari, S., M. Kalbassi, M. Soltani y I. Yu. 2013. Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iranian Journal of Fisheries Sciences, 12 (1): 76-95. http://hdl.handle.net/1834/11597
Kakakhel, M., S. Din y W. Wang. 2021. Evaluation of the antibacterial influence of silver nanoparticles against fish pathogenic bacterial isolates and their toxicity against common carp fish. Microscopy Research Technique, 85: 1282-1288. doi: 10.1002/jemt.23994
Kakakhel, M., F. Wu, H. Feng, Z. Hassan, I. Ali, I. Saif, S. Din y W. Wang. 2020. Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microscopy Research Technique, 84: 1765–1774. doi: 10.1002/jemt.23733
Kalbassi, M., S. Johari, M. Soltani y I. Yu. 2013. Particle size and agglomeration affect the toxicity levels of silver nanoparticle types in aquatic environment. Ecopersia, 1 (3): 273–290. http://ecopersia.modares.ac.ir/article-24-7295-en.html
Kasim, A., A. Ariff, R. Mohamad y F. Wong. 2020. Interrelations of synthesis method, polyethylene glycol coating, physico-chemical characteristics, and antimicrobial activity of silver nanoparticles. Nanomaterials, 10 (2475): 1-15. doi: 10.3390/nano10122475
Kaya, H., F. Aydin, M. Gürkan, S. Yilmaz, M. Ates, V. Demir y Z. Arslan. 2015. Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 40 (3): 936-947. doi: 10.1016/j.etap.2015.10.001
Khafaga, A., H. Abu-Ahmed, A. El-Khamary, I. Elmehasseb y H. Shaheen. 2018. Enhancement of equid distal limb wounds healing by topical application of silver nanoparticles. Journal of Equine Veterinary Science, 61: 76-87. doi: 10.1016/j.jevs.2017.11.013
Khafaga, A., A. Alwan, N. Abdelsalama, M. Soliman, A. Taha, R. Ghareeb, M. Atta y W. Dosoky. 2021. Silver-silica nanoparticles induced dose-dependent modulation of histopathological, immunohistochemical, ultrastructural, proinflammatory, and immune status of broiler chickens. Research Square preprint (Version 1). doi: 10.21203/rs.3.rs-284253/v1
Khan, M., S. Ranjani y S. Hemalatha. 2022. Synthesis and characterization of Kappaphycus alvarezii derived silver nanoparticles and determination of antibacterial activity. Materials Chemistry and Physics, 282: 1-7. doi: 10.1016/j.matchemphys.2022.125985
Khan, T. y F. Zafar. 2005. Haematological study in response to varying doses of estrogen in broiler chicken. International Journal of Poultry Science, 4 (10): 748-751. doi: 10.3923/ijps.2005.748.751
Khattak, U., R. Ullah, S. Khan, S. Jan, A. Rauf y M. Ramadan. 2019. Synthesis, characteristics and biological activities of silver nanoparticles from Euphorbia dracunculoides. EurAsian Journal of BioSciences, 13: 2249-2260. https://www.researchgate.net/publication/337632916_Synthesis_characteristics_and_biological_activities_of_silver_nanoparticles_from_Euphorbia_dracunculoides
Kittler, S., C. Greulich, J. Diendorf, M. Köller y M. Epple. 2010. The toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chemistry of Materials, 22: 4548-4554. doi: 10.1021/cm100023p
Kowalczyk, P., M. Szymczak, M. Maciejewska, L. Laskowski, M. Laskowska, R. Ostaszewski, G. Skiba y I. Franiak-Pietryga. 2021. All that glitters is not silver- a new look at microbiological and medical applications of silver nanoparticles. International Journal of Molecular Sciences, 22 (2): 854. doi: 10.3390/ijms22020854
Kulak, E., K. Ognik, A. Stepniowska y A. Drazbo. 2018a. Effect of nanoparticles of silver on redox status and the accumulation of Ag in chicken tissues. Journal of the Science of Food and Agriculture, 98: 4085-4096. doi: 10.1002/jsfa.8925
Kulak, E., K. Ognik, A. Stepniowska y Sembratowicz. 2018b. The effect of administration of silver nanoparticles on silver accumulation in tissues and the immune and antioxidant status of chickens. Journal of Animal and Feed Sciences, 27: 44-54. doi: 10.22358/jafs/84978/2018
Kulkarni, R., D. Deobagkar y S. Zinjarde. 2022. Nanoparticles derived from Rhodococcus kroppenstedtii as bioactive agents for controlling aquaculture associated bacterial pathogens. Aquaculture, 547: 1-8. doi: 10.1016/j.aquaculture.2021.737538
Kumar, I., J. Bhattacharya, B. Das y P. Lahiri. 2020. Growth, serum biochemical, and histopathological responses of broilers administered with silver nanoparticles as a drinking water disinfectant. 3 Biotech, 10: 94. doi: 10.1007/s13205-020-2101-1
Lacave, J., A. Fanjul, E. Bilbao, N. Gutierrez, I. Barrio, I. Arostegui, M. Cajaraville y A. Orbea. 2017. Acute toxicity, bioaccumulation, and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish. Comparative Biochemistry and Physiology, 199: 69-80. doi: 10.1016/j.cbpc.2017.03.008
Loo, Y., Y. Rukayadi, M. Nor-Khaizura, C. Kuan, B. Chieng, M. Nishibuchi y S. Radu. 2018. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers in Microbiology, 9: 1555. doi: 10.3389/fmicb.2018.01555
Mabrouk, M. M., A. Tangeldein Mansour, A. F. Abdelhamid, K. M. Abualnaja, A. Mamoon, W. S. Gado, A. F. Matter, H. F. Ayoub. 2021. Impact of aqueous exposure to silver nanoparticles on growth performance, redox status, non-specific immunity, and histopathological changes on Nile Tilapia, Oreochromis nilocutis, challenged with Aeromonas hydrophila. Aquaculture Reports, 21:1-11. https://doi.org/10.1016/j.aqrep.2021.100816
Mahanty, A., S. Mishra, R. Bosu, U. Maurya, S. Netam, y B. Sarkar. 2013. Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian Journal of Microbiology, 53 (4): 438–446. doi: 10.1007/s12088-013-0409-9
Mahmoud, U. 2012. Silver nanoparticles in poultry production. Journal of Advanced Veterinary Research, 2: 303-306. https://www.advetresearch.com/index.php/AVR/article/view/202
Maity, G., P. Maity, I. Choudhuri, G. Sahoo, N. Maity, K. Ghosh, N. Bhattacharyya, S. Dalai y S. Mondal. 2020. Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from kalmegh. International Journal of Biological Macromolecules, 162: 1025-1034. doi: 10.1016/j.ijbiomac.2020.06.215
Maldonado-Muñiz, M., C. Luna, R. Mendoza-Reséndez, E. Barriga-Castro, S. Soto-Rodríguez, D. Ricque-Marie y L. Cruz-Suarez. 2020. Silver nanoparticles against acute hepatopancreatic necrosis disease (AHPND) in shrimp and their depuration kinetics. Journal of Applied Phycology, 32: 2431-2445. doi: 10.1007/s10811-019-01948-w
Malyugina, S., S. Skalickova, J. Skladanka, P. Slama y P. Horky. 2021. Biogenic selenium nanoparticles in animal nutrition: A review. Agriculture. 11: 1244. doi: 10.3390/agriculture11121244
Mansour, W., N. Abdelsalam, M. Tanekhy, A. Khaled y A. Mansour. 2021. Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on nile tilapia (Oreochromis niloticus) fingerlings. Comparative Biochemistry and Physiology, 247: 2-11. doi: 10.1016/j.cbpc.2021.109068
Mariadoss, A., V. Ramachandran, V. Shalini, B. Agilan, J. Franklin, K. Sanjay, Y.G. Alaa, M. Tawfiq y D. Ernest. 2019. Green synthesis, characterization, and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microbial Pathogenesis, 135: 1-8. doi: 10.1016/j.micpath.2019.103609
Michalak, I., K., Dziergowska, M., Alagawany, M., Farag, N., El-Shall, H., Tuli, T. Emran y K. Dhama. 2022. The effect of metal-containing nanoparticles on the health, performance and production of livestock animal and poultry. Review. Veterinary Quarterly, 42 (1): 68-94. doi: 10.1080/01652176.2022.2073399
Mohammadizadeh, M. y F, Kashi. 2021. Phytosynthesized of silver nanoparticles; antimicrobial, antibiofilm activities against E. coli pathogenic isolated from urinary tract infection. Research Square, Preprint. doi: 10.21203/rs.3.rs-271404/v1
Mohanta, Y., D. Nayak, K. Biswas, S. Singdevsacham, E. Abd_Allah, A. Hashem, A. Alqarawi, D. Yadav y T. Mohanta. 2018. Silver nanoparticles synthesized using wild mushrooms show potential antimicrobial activities against food-borne pathogens. Molecules, 23 (655): 1-18. doi: 10.3390/molecules23030655
Mondal, A., A. Hajra, W. Shaikh, S. Chakraborty y N. Mondal. 2022. Synthesis of silver nanoparticle with Colocasia esculenta (L.) stem and its larvicidal activity against Culex quinquefasciatus and Chironomus sp. Asian Pacific Journal of Tropical Biomedicine, 9 (12): 510-517. doi: 10.4103/2221-1691.271724
Moodley, J., S. Krishna, K. Pillay, Sershen y P. Govender. 2018. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9: 015011. doi: 10.1088/2043-6254/aaabb2
Morejón, B., F. Pilaquinga, F. Domenech, D. Ganchala, A. Debut y M. Neira. 2018. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). Journal of Nanotechnology, 2018: 1-8. doi: 10.1155/2018/6917938
Morones, J., J. Elechiguerra, A. Camacho, K. Holt, J. Kouri, J. Tapia y M. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16: 2346-2353. doi: 10.1088/0957-4484/16/10/059
Moustafa, E., R. Khalil, T. Saad, M. Amer, M. Shukry, F. Farrag, A. Elsawy, E. Lolo, M. Sakran, y A. Hamouda. 2021. Silver nanoparticles as an antibacterial agent in Oreochromis niloticus and Sparus auratus fish. Aquaculture Research, 52 (12): 6218-6234. doi: 10.1111/are.15484
Nadaroglu, H., A. Alayli, S. Ceker, H. Ogutcu y G. Agar. 2020. Biosynthesis of silver nanoparticles and investigation of genotoxic effects and antimicrobial activity. International Journal of Nano Dimension, 11 (2): 158-167. https://journals.iau.ir/article_672552_03bc5306a0a8088c9661eb5ea68012d1.pdf
NRC (National Research Council). 1980. Mineral tolerance of domestic animals. Washington, DC. The National Academies Press. 577 p. doi: 10.17226/25
Ostaszewska, T., J. Sliwinski, M. Kamaszewski, P. Sysa y M. Chojnacki. 2018. Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Environmental Science and Pollution Research, 25: 908–915. doi: 10.1007/s11356-017-0494-0
Othman, A., M. Elsayed, N. Al-Balakocy, M. Hassan y A. Elshafei. 2019. Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. Journal of Genetic Engineering and Biotechnology, 17 (8): 1-13. doi: 10.1186/s43141-019-0008-1
Öztürk, B., B. Gürsu y İ. Dağ. 2020. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89: 208-219. doi: 10.1016/j.procbio.2019.10.027
Pallavi, S., H. Rudayni, A. Bepari, S. Niazi y S. Nayaka. 2022. Green synthesis of silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi Journal of Biological Sciences, 29: 228-238. doi: 10.1016/j.sjbs.2021.08.084
Parthiban, E., N. Manivannan, R. Ramanibai y N. Mathivanan. 2018. Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports, 20: 1-10. doi: 10.1016/j.btre.2018.e00297
Pérez-Etayo, L., D. González, J. Leiva, M. Díez-Leturia., A. Ezquerra. L. Lostao y A. Vitas. 2021. Antibacterial activity of kaolin-silver nanomaterials: alternative approach to the use of antibiotics in animal production. Antibiotics, 10 (11): 1276. doi: 10.3390/antibiotics10111276
Phull, AR., Q. Abbas, A. Ali, H. Raza, S. Kim, M. Zia y I. Haq. 2016. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2: 31-36. doi: 10.1016/j.fjps.2016.03.001
Pilaquinga, F., B. Morejón, D. Ganchala, J. Morey, N. Piña, A. Debut y M. Neira. 2019. Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). PLOS ONE, 14 (10): 1-13. doi: 10.1371/journal.pone.0224109
Priyaragini, S., S. Sathishkumaer y K. Bhaskararao. 2013. Biosynthesis of silver nanoparticles using actinobacteria and evaluating its antimicrobial and cytotoxicity activity. International Journal of Pharmacy and Pharmaceutical Sciences, 5 (2): 709-712. https://innovareacademics.in/journal/ijpps/Vol5Suppl2/6897.pdf
Premkumar, J., T. Sudhakar, A. Dhakal, J. Shrestha, S. Krishnakumar y P. Balashanmugam. 2018. Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatalysis and Agricultural Biotechnology, 15: 311-316. doi: 10.1016/j.bcab.2018.06.005
Raguvaran, K., M. Kalpana, T. Manimegalai y R. Maheswaran. 2021. Insecticidal, not-target organism activity of synthesized silver nanoparticles using Actinokineospora fastidiosa. Biocatalysis and Agricultural Biotechnology, 38: 1-18. https://doi.org/10.1016/j.bcab.2021.102197
Rahmani, R., Y. Hamesadeghi y A. Mansouri. 2019. Toxicity effects of mercury and silver nanoparticles on common carp (Cyprinus carpio). Comparative Clinical Pathology, 28: 811-816. doi: 10.1007/s00580-019-02933-y
Rajakumar, G., T. Gomathi, M. Thiruvengadam, D. Rajeswari, V. Kalpana y I. Chung. 2017. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microbial Pathogenesis, 103: 123-128. doi: 10.1016/j.micpath.2016.12.019
Rajakumar, G. y A. Rahuman. 2012. Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Research in Veterinary Science, 93: 303-309. doi: 10.1016/j.rvsc.2011.08.001
Rajamohamed, B., S. Siddharthan, V. Palanivel, M. Vinayagam, V. Selvaraj, S. Subpiramaniyam, S. Salmen, S. Obaid, S. Palanivel y S. Subramanian. 2022. Facile and eco-friendly fabrication of silver nanoparticles using Nyctanthes arbor-tristis leaf extract to study antibiofilm and anticancer properties against Candida albicans. Advances in Materials Science and Engineering, 2022: 1-10. doi: 10.1155/2022/2509089
Rajkumar, K., R. Arunachalam, M. Anbazhagan, S. Palaniyappan, S. Veeran, A. Sridah y T. Ramasamy. 2022. Accumulation, chronicity, and induction of oxidative stress regulating genes through Allium cepa. l. Functionalized silver nanoparticles in freshwater common carp (Cyprinus carpio). Biological Trace Element Research. doi: 10.1007/s12011-022-03164-z
Rajoka, M., H. Mehwish, H. Zhang, M. Ashraf, H. Fang, X. Zeng, Y. Wu, M. Khurshid, L. Zhao y Z. He. 2020. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186: 1-11. doi: 10.1016/j.colsurfb.2019.110734
Rajput, S., D. Kumar y V. Agrawal. 2020. Green synthesis of silver nanoparticles using Indian belladonna extract and their potential antioxidant, anti infammatory, anticancer and larvicidal activities. Plant Cell Reports, 39: 921–939. doi: 10.1007/s00299-020-02539-7
Ramanathan, S., S. Gopinath, P. Anbu, T. Lakshmipriya, F. Kasim y C. Lee. 2018. Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities. Journal of Molecular Structure, 1160: 80-91. doi: 10.1016/j.molstruc.2018.01.056
Ramveer, N. 2021. Green synthesis of silver nanoparticles using methanol extract of Ipomoea carnea Jacq. to combat multidrug resistance bacterial pathogens. Current Research in Green and Sustainable Chemistry, 4: 1-7. doi: 10.1016/j.crgsc.2021.100152
Rao, S., K. Saptami, J. Venkatesan y P. Rekha. 2020. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity. International Journal of Biological Macromolecules, 163: 745-755. doi: 10.1016/j.ijbiomac.2020.06.230
Rautela, A., J. Rani y M. Debnath. 2019. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology, 10 (5): 1-10. doi: 10.1186/s40543-018-0163-z
Reeba, C. y S. Helen. 2021. Insecticidal and larvicidal activities of silver nano particles synthesized using plant biomaterials. Annals of Romanian Society for Cell Biology, 25 (3): 5255-5261. https://www.annalsofrscb.ro/index.php/journal/article/view/2031
Reda, M., A. Ashames, Z. Edis, S. Bloukh, R. Bhandare y H. Sara. 2019. Green synthesis of potent antimicrobial silver nanoparticles using different plant extracts and their mixtures. Processes, 7 (8): 510, 1-14. doi: 10.3390/pr7080510
Riaz, K., A. Nagy, R. Brown, Q. Zhang, S. Malghan y P. Goering. 2017. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicology in Vitro, 38: 172-192. doi: 10.1016/j.tiv.2016.10.012
Rohit, R., C. Murthy, M. Idris y S. Singh. 2019. Toxicity of TiO2, SiO2, ZnO, CuO, Au, and Ag engineered nanoparticles on hatching and early nauplii of Artemia sp. PeerJ, 6: e6138. doi: 10.7717/peerj.6138
Saad, P., R. Castelino, V. Ravi, I. Al-Amri y S. Khan. 2021. Green synthesis of silver nanoparticles using Omani pomegranate peel extract and two polyphenolic natural products: characterization and comparison of their antioxidant, antibacterial, and cytotoxic activities. Journal of Basic and Applied Sciences, 10 (29): 1-10. doi: 10.1186/s43088-021-00119-6
Saeid, M., K. Hammad y A. Shehata. 2021. Larvicidal activity of green synthesized silver nanoparticles using different plant extracts against Culex pipiens L. (Diptera: Culicidae). Egyptian Academic Journal of Biological Sciences, 13 (1): 47–56. doi: 10.21608/EAJBSE.2021.188311
Safarpoor, M., M. Ghaedi, A. Asfaram, M. Yousefi-Nejad, H. Javadian, H. Khafri y M. Bagherinasab. 2018. Ultrasound-assisted extraction of antimicrobial compounds from Thymus daenensis and Silybum marianum: Antimicrobial activity with and without the presence of natural silver nanoparticles. Ultrasonics – Sonochemistry, 42: 76-83. doi: 10.1016/j.ultsonch.2017.11.001
Salem, H., E. Ismael y M. Shaalan. 2021. Evaluation of the effects of silver nanoparticles against experimentally induced necrotic enteritis in broiler chickens. International Journal of Nanomedicine, 16: 6783-6796. doi: 10.2147/IJN.S319708
Sampath, G., M. Govarthanan, N. Rameshkumar, M. Krishnan, A. Alotaibi y K. Nagarajan. 2021. A comparative analysis of in vivo toxicity, larvicidal and catalytic activity of synthesized silver nanoparticles. Applied Nanoscience, 13: 2379-2392. doi: 10.1007/s13204-021-02004-1
Santhosh, S., D. Natarajan, P. Deepak, B. Gayathri, L. Kaviarasan, P. Naresh, M. Nanjan y M. Chandrasekar. 2020. Metabolic enzyme inhibitory and larvicidal activity of biosynthesized and heat stabilized silver nanoparticles using Annona muricata leaf extract. BioNanoScience, 10: 267–278. doi: 10.1007/s12668-019-00709-w
Santhoshkumar, T., A. Rahuman, A. Bagavan, S. Marimuthu, C. Jayaseelan, A. Kirthi, C. Kamaraj, G. Rajakumar, A. Zahir, G. Elango, K. Velayutham, M. Iyappan, C. Siva, L. Karthik y K. Rao. 2012. Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Experimental Parasitology, 132: 156-165. doi: 10.1016/j.exppara.2012.06.009
Saranyadevi, S., K. Suresh, N, Mathiyazhagan, R. Muthusamy y R. Thirumalaisamy. 2021. Silver nanoparticles synthesized using Asafoetida resin, characterization of their broad spectrum and larvicidal activity. Annals of Romanian Society for Cell Biology, 25 (4): 1583-6258. https://www.annalsofrscb.ro/index.php/journal/article/view/4847
Seetharaman, P., R. Chandrasekaran, S. Gnanasekar, G. Chandrakasan, M. Gupta, D. Manikandan y S. Sivaperumal. 2018. Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris. Biocatalysis and Agricultural Biotechnology, 16: 22-30. doi: 10.1016/j.bcab.2018.07.006
Shokry, A., M. Khalil, H. Ibrahim, M. Soliman y S. Ebrahim. 2021. Acute toxicity assessment of polyaniline/Ag nanoparticles/graphene oxide quantum dots on Cypridopsis vidua and Artemia salina. Scientific Reports, 11: 1-9. doi: 10.1038/s41598-021-84903-5
Singh, H., J. Du, P. Singh y T. Yi. 2018. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. Journal of Pharmaceutical Analysis, 8: 258-264. doi: 10.1016/j.jpha.2018.04.004
Singh, R., N. Sagar y N. Kumar. 2022. Bio-inspired green fabrication of silver nanoparticles (AgNPs) using aqueous leaves extract of Ipomoea carnea jacq. to tackle multiple drug resistance MTCC bacterial strains. European Journal of Medicinal Chemistry Reports, 6: 1-6. doi: 10.1016/j.ejmcr.2022.100066
Singh, S. y V. Mohanlall. 2022. Biocatalytic and biological activities of Cassia occidentalis mediated silver nanoparticles. Trends in Sciences, 19 (1): 1-12. doi: 10.48048/tis.2022.1712
Simbine, E., L. Rodrigues, J. Lapa-Guimarães, E. Kamimura, C. Corassin y C. Oliveira. 2019. Application of silver nanoparticles in food packages: A review. Food Science and Technology, 39 (4): 793-802. doi: 10.1590/fst.36318
Sumitha, S., S. Vasanthi, S. Shalini, S. Chinni, S. Gopinath, P. Anbu, M. Bahari, R. Harish, S. Kathiresan y V. Ravichandran. 2018. Phyto-mediated photo catalysed green synthesis of silver nanoparticles using Durio zibethinus seed extract: Antimicrobial and cytotoxic activity and photocatalytic applications. Molecules, 23 (3311): 1-15. doi: 10.3390/molecules23123311
Taha, Z., S. Hawar y G. Sulaiman. 2019. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnology Letters, 41: 899–914. doi: 10.1007/s10529-019-02699-x
Tailor, G., B. Yadav, J. Chaudhary, M. Joshi y C. Suvalka. 2020. Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochemistry and Biophysics Reports, 24: 1-5. doi: 10.1016/j.bbrep.2020.100848
Tammam, A., S. Ibrahim, A. Hemid, F. Abdel-Azeem, A. El-Faham, N. Ali y W. Salem. 2021. Effect of silver nanoparticles as a water supplementation on productive performance, carcass characteristics and bone measurements of broiler chicks. Egyptian Journal of Nutrition and Feeds, 24 (2): 95-100. doi: 10.21608/ejnf.2021.210883
Thammawithan, S., P. Siritongsuk, S. Nasompag, S. Daduang, S. Klaynongsruang, N. Prapasarakul y R. Patramanon. 2021. A biological study of anisotropic silver nanoparticles and their antimicrobial application for topical use. Veterinary Sciences, 8 (177): 1-15. doi: 10.3390/vetsci8090177
Uddin, A., M. Siddique, F. Rahman, A. Ullah y R. Khan. 2020. Cocos nucifera leaf extract mediated green synthesis of silver nanoparticles for enhanced antibacterial activity. Journal of Inorganic and Organometallic Polymers and Materials, 30: 3305–3316. doi: 10.1007/s10904-020-01506-9
Vadalasetty, K., Lauridsen, C., Engberg, R., Vadalasetty, R., Kutwin, M., Chwalibog, A. y E. Sawosz. 2018. Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Veterinary Research, 14:1. doi: 10.1186/s12917-017-1323-x
Vali, S., G. Mohammadi, K. Tavabe, F. Moghadas y S. Naserabad. 2020. The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicology and Environmental Safety, 194 (110353): 1-12. doi: 10.1016/j.ecoenv.2020.110353
Van Khanh, N. y P. Van Cu. 2019. Antibacterial activity of silver nanoparticles against Aeromonas spp. and Vibrio spp. isolated from aquaculture water environment in Thua Thien Hue. Agriculture and Rural Development, 128 (3B): 5–16. doi: 10.26459/hueuni-jard.v128i3B.4615
Vazquez-Muñoz, R., A. Meza-Villezcas, P. Fournier, E. Soria-Castro, K. Juarez-Moreno, A. Gallego-Hernández, N. Bogdanchikova, R. Vazquez-Duhalt y A. Huerta-Saquero. 2019. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE, 14 (11): e0224904. doi: 10.1371/journal.pone.0224904
Veisi, S., S. Johari, C. Tyler, B. Mansouri y M. Esmaeilbeigi. 2021. Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in nile tilapia (Oreochromis niloticus). Environmental Science and Pollution Research, 28: 26055–26063. doi: 10.1007/s11356-021-12568-8
Vijayakumar, S., B. Malaikozhundan, K. Saravanakumar, E. Durán-Lara, M. Wang y B. Vaseeharan. 2019. Garlic clove extract assisted silver nanoparticle – antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. Journal of Photochemistry y Photobiology, B: Biology, 198: 1-12. doi: 10.1016/j.jphotobiol.2019.111558
Vimala, G., M. Thilaga, T. Veni, K. Devi, y K. Gopalarathinam. 2020. Larvicidal activity of aqueous mimusops elengi seeds-synthesized silver nanoparticles against Aedes aegypti and Qulex quinquefasciatus. International Journal of Mosquito Research, 7 (2): 30-36. https://www.dipterajournal.com/archives/2020/7/2/A/7-1-16
Vishwasrao, C., B. Momin, y L. Ananthanarayan. 2019. Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste and Biomass Valorization, 10: 2353–2363. doi: 10.1007/s12649-018-0230-0
Wang, L., Y. Wu, J. Xie, S. Wu, y Z. Wu. 2018. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava. l. Leaf aqueous extracts. Materials Science y Engineering C, 86: 1-8. doi: 10.1016/j.msec.2018.01.003
Wilson, J., M. Lakshmi, T. Sivakumar, P. Ponmanickan y S. Sevarkodiyone. 2022. Green synthesis of silver nanoparticles using Bacillus subtilis (P3) and its larvicidal, histopathological and biotoxicity efficacy. South African Journal of Botany, 151 (Part B): 309-318. doi: 10.1016/j.sajb.2022.02.033
Wolny-Koladka, K. y D. Malina. 2017. Toxicity assessment of silver nanoparticles against isolated from horse dung. Micro y Nano Letters, 12 (10): 772-776. doi: 10.1049/mnl.2017.0129
Zahir A. y A. Rahuman. 2012. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculate. Veterinary Parasitology, 187: 511-520. doi: 10.1016/j.vetpar.2012.02.001
Zainab, S., S. Hamid, S. Sahar y N. Ali. 2022. Fluconazole and biogenic silver nanoparticles-based nano-fungicidal system for highly efficient elimination of multi-drug resistant Candida biofilms. Materials Chemistry and Physics, 276: 1-13. doi: 10.1016/j.matchemphys.2021.125451
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.