Efecto del curado a alta potencia sobre la contracción de polimerización y la microdureza de las resinas compuestas

Autores/as

DOI:

https://doi.org/10.15517/z21whs73

Palabras clave:

Composite resins; Dental curing lights; Dental materials; Hardness tests; Polymerization; Mechanical stress.

Resumen

Se sabe que la contracción por polimerización y la microdureza de las resinas compuestas dentales están significativamente influenciadas por el grosorde aplicación y la intensidad lumínica de la unidad de fotocurado. Sin embargo, el efecto específico del modo de fotopolimerización de alta potencia sobre las resinas compuestas no ha sido complemente esclarecido. Este estudio in investigó el efecto del modo de curado utilizando una unidad LED de alta potencia (VALO) en términos de contracción volumétrica y microdureza de resinas compuestas nanohíbridos. SonicFill 3 y OptiShade fueron polimerizadas empleando modos de curado estándar y de alta potencá con el disposivito VALO Cordless. Se prepararon un total de 60 especímenes utilizando moldes de teflón con un diámetro de 8 mm y un grosor de 2 mm y 4 mm. Los valores de microdureza fueron determinados mediante un durómetro Vickers (Innovatest, Maastricht, Holanda). Para la medición de la contracción volumétrica, se prepararon 40 especímenes adicionales de los composites SonicFill 3 y OptiShade, evaluados con un analizador de contracción volumétrica (Acuvol Schaumburg, IL, EE. UU.). Se ha observado que cada uno de los modos de curado afecta a la microdureza de cada material compuesto. En cuanto a la microdureza de los materiales compuestos nanohíbridos, se observaron diferencias signficatives entre los espesores y los mododa de curado con luz (p<0,05). En cuanto a la contracción volumétrica, se midieron diferencias entre los materiales según el modo de curado. El curado de alta potencia para el compuesto de relleno masivo mostró el valor más bajo de contracción por polimerización- El aumento del espesor de la capa tuvo un efecto negativo en la dureza de las resinas compuestas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Meereis C.T.W., Münchow E.A., de Oliveira da Rosa W.L., da Silva A.F., Piva E. Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of composition strategies. J Mech Behav Biomed Mater. 2018; 82: 268-81.

Shah P.K., Stansbury J.W. Photopolymerization shrinkage-stress reduction in polymer-based dental restoratives by surface modification of fillers. Dent Mater. 2021; 37 (4): 578-87.

Watts D.C., Cash A. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dental Materials. 1991; 7 (4): 281-7.

Fanfoni L., De Biasi M., Antollovich G., Di Lenarda R., Angerame D. Evaluation of degree of conversion, rate of cure, microhardness, depth of cure, and contraction stress of new nanohybrid composites containing pre-polymerized spherical filler. J Mater Sci Mater Med. 2020; 31 (12): 127.

Aung S.Z., Takagaki T., Ikeda M., Nozaki K., Burrow M.F., Abdou A., et al. The effect of different light curing units on Vickers microhardness and degree of conversion of flowable resin composites. Dent Mater J. 2021; 40 (1): 44-51.

Ilie N., Stark K. Curing behaviour of high-viscosity bulk-fill composites. J Dent. 2014; 42 (8): 977-85.

Ferracane J.L. Resin composite-state of the art. Dental materials. 2011; 27 (1): 29-38.

Yu P., Xu Y.X., Liu Y.S. Polymerization shrinkage and shrinkage stress of bulk-fill and non-bulk-fill resin-based composites. J Dent Sci. 2022; 17 (3): 1212-6.

Lima R.B.W., Troconis C.C.M., Moreno M.B.P., Murillo-Gómez F., De Goes M.F. Depth of cure of bulk fill resin composites: A systematic review. J Esthet Restor Dent. 2018; 30 (6): 492-501.

Jakupović S., Pervan N., Mešić E., Gavranović-Glamoč A., Bajsman A., Muratović E., et al. Assessment of Microhardness of Conventional and Bulk-Fill Resin Composites Using Different Light-Curing Intensity. Polymers (Basel). 2023; 15 (10).

Rizzante F.A.P., Duque J.A., Duarte M.A.H., Mondelli R.F.L., Mendonça G., Ishikiriama S.K. Polymerization shrinkage, microhardness and depth of cure of bulk fill resin composites. Dent Mater J. 2019; 38 (3): 403-10.

Karacolak G., Turkun L.S., Boyacioglu H., Ferracane J.L. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites. Dent Mater J. 2018; 37 (2): 206-13.

Yu P., Yap A., Wang X.Y. Degree of Conversion and Polymerization Shrinkage of Bulk-Fill Resin-Based Composites. Oper Dent. 2017; 42 (1): 82-9.

Czasch P., Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig. 2013; 17 (1): 227-35.

Jang J.H., Park S.H., Hwang I.N. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent. 2015; 40 (2): 172-80.

Yang Y., Lei H., Liu Y., Xia B. Clinical evaluation of SonicFill bulk resin technique in the restoration of proximal deep caries of primary molars: a two-year randomized controlled trial. BMC Oral Health. 2024; 24 (1): 1461.

Kerr Dental. Optishade™ Technical Bulletin. Kerr Corporation; Orange, CA, USA; 2023.

Ilie N., Moldovan M., Ionescu A.C. Microstructure and Mechanical Behavior of Modern Universal-Chromatic and Bulk-Fill Resin-Based Composites Developed to Simplify Dental Restorative Procedures. J Funct Biomater. 2022;13 (4).

van Dijken J.W. Durability of resin composite restorations in high C-factor cavities: a 12-year follow-up. J Dent. 2010; 38 (6): 469-74.

Peutzfeldt A., Asmussen E. Resin composite properties and energy density of light cure. J Dent Res. 2005; 84 (7): 659-62.

Leprince J.G., Palin W.M., Hadis M.A., Devaux J., Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater. 2013; 29 (2): 139-56.

Leprince J.G., Lamblin G., Devaux J., Dewaele M., Mestdagh M., Palin W.M., et al. Irradiation modes' impact on radical entrapment in photoactive resins. J Dent Res. 2010; 89 (12): 1494-8.

Par M., Marovic D., Attin T., Tarle Z., Tauböck T.T. The effect of rapid high-intensity light-curing on micromechanical properties of bulk-fill and conventional resin composites. Sci Rep. 2020;10 (1):10560.

Price R.B., Ferracane J.L., Hickel R., Sullivan B. The light-curing unit: An essential piece of dental equipment. Int Dent J. 2020; 70 (6): 407-17.

Ersen K.A., Gürbüz Ö., Özcan M. Evaluation of polymerization shrinkage of bulk-fill resin composites using microcomputed tomography. Clin Oral Investig. 2020; 24 (5): 1687-93.

Marx P., Wiesbrock F. Expanding Monomers as Anti-Shrinkage Additives. Polymers (Basel). 2021; 13 (5).

Tiba A., Charlton D.G., Vandewalle K.S., Ragain J.C., Jr. Comparison of two video-imaging instruments for measuring volumetric shrinkage of dental resin composites. J Dent. 2005; 33 (9): 757-63.

Nie J., Yap A.U., Wang X.Y. Influence of Shrinkage and Viscosity of Flowable Composite Liners on Cervical Microleakage of Class II Restorations: A Micro-CT Analysis. Oper Dent. 2018; 43 (6): 656-64.

Atria P.J., Sampaio C.S., Cáceres E., Fernández J., Reis A.F., Giannini M., et al. Micro-computed tomography evaluation of volumetric polymerization shrinkage and degree of conversion of composites cured by various light power outputs. Dent Mater J. 2018; 37 (1): 33-9.

Papadogiannis D., Tolidis K., Gerasimou P., Lakes R., Papadogiannis Y. Viscoelastic properties, creep behavior and degree of conversion of bulk fill composite resins. Dent Mater. 2015; 31 (12): 1533-41.

Ilie N., Stark K. Curing behaviour of high-viscosity bulk-fill composites. Journal of dentistry. 2014; 42 (8): 977-85.

Alsahafi T.A., Walter R., Nunes M., Sulaiman T.A. Wear of Bulk-fill Composite Resins After Thermo-mechanical Loading. Oper Dent. 2023; 48 (4): 416-24.

Jeong T.S., Kang H.S., Kim S.K., Kim S., Kim H.I., Kwon Y.H. The effect of resin shades on microhardness, polymerization shrinkage, and color change of dental composite resins. Dent Mater J. 2009; 28 (4): 438-45.

Tarle Z., Attin T., Marovic D., Andermatt L., Ristic M., Tauböck T.T. Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clin Oral Investig. 2015; 19 (4): 831-40.

Bucuta S., Ilie N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. 2014; 18 (8): 1991-2000.

Garcia D., Yaman P., Dennison J., Neiva G. Polymerization shrinkage and depth of cure of bulk fill flowable composite resins. Oper Dent. 2014; 39 (4): 441-8.

Torres C.R.G., Prado T.P., Ávila D., Pucci C.R., Borges A.B. Influence of Light-Curing Time and Increment Thickness on the Properties of Bulk Fill Composite Resins With Distinct Application Systems. Int J Dent. 2024; 2024: 2123406.

Santini A., Miletic V., Swift M.D., Bradley M. Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units. J Dent. 2012; 40 (7): 577-84.

Varshney I., Jha P., Nikhil V. Effect of monowave and polywave light curing on the degree of conversion and microhardness of composites with different photoinitiators: An in vitro study. J Conserv Dent. 2022; 25 (6): 661-5.

Gonulol N., Ozer S., Tunc E.S. Effect of a third-generation LED LCU on microhardness of tooth-colored restorative materials. Int J Paediatr Dent. 2016; 26 (5): 376-82.

Ilie N., Stark K. Effect of different curing protocols on the mechanical properties of low-viscosity bulk-fill composites. Clin Oral Investig. 2015; 19 (2): 271-9.

Publicado

2026-01-15