Abstract
We present analytical solutions for a universe with a scalar field equivalent to a mixture of three perfect fluids: dark energy, dust and stiff matter. The space-time is an anisotropic and homogenous universe of Petrov Type D that expands isotropically in two spatial axes. We also determine the singularities with the Kretschmann scalar, the Hubble parameter, the deceleration parameter, and the temperature in terms of time. Finally, we study the Jacobi stability of the universe with the scalar field and conclude that the model is stable at all times.
References
[1] R. Alvarado, Cosmological Exact Solutions Set of a Perfect Fluid in an Anisotropic Space-Time in Petrov Type D. Advanced Studies in Theoretical Physics 10(2016), no. 6, 267–295. doi: 10.12988/astp.2016.6311
[2] R. Alvarado, The Hubble constant and the deceleration parameter in anisotropic cosmological spaces of Petrov type D. Advanced Studies in Theoretical Physics 10(2016), no. 8, 421–431. doi: 10.12988/astp.2016.6930
[3] R. Alvarado, Exact solutions of a Chaplygin gas in an anisotropic space-time of Petrov D. Advanced Studies in Theoretical Physics 11(2017), no. 12, 609–619. doi: 10.12988/astp.2017.7836
[4] R. Alvarado, Thermodynamics and small temporal variations in the equations of state of anisotropic cosmological models of Petrov type D. Advanced Studies in Theoretical Physics 11(2017), no. 1, 9–17. doi: 10.12988/astp.2017.6932
[5] R. Alvarado, Exact cosmological solution of a scalar field of type +cosh in anisotropic space-time of Petrov type D. Advanced Studies in Theoretical Physics 12(2018), no. 3, 121–128. doi: 10.12988/astp.2018.825
[6] R. Alvarado, Exact cosmological solutions of isobaric scalar fields in spacetimes: anisotropic of the type of Petrov D and isotropic homogeneous. Advanced Studies in Theoretical Physics 12(2018), no. 7, 319–333. doi: 10.12988/astp.2018.8937
[7] R. Alvarado, Interactive spinorial and scalar fields congruent to the Chaplygin’s gas. Exact cosmologic solutions in a space-time of Petrov D. Advanced Studies in Theoretical Physics 12(2018), no. 7, 335–345. doi: 10.12988/astp.2018.8938
[8] R. Alvarado, Cosmological Exact Solutions of Petrov Type D. A Mixture of Three Fluids: Quintessence, Dust and Radiation. Advanced Studies in Theoretical Physics 14(2020), no. 7, 327–334. doi: 10.12988/astp.2020.91502
[9] R. Alvarado, Cosmological Exact Solution of Petrov Type D of a Mixture of Fluids of Dark Energy and Dust and a Non Disrupted Primordial Magnetic Field. Advanced Studies in Theoretical Physics 15(2021), no. 3, 107–114. doi: 10.12988/astp.2021.91519
[10] R. Alvarado, Cosmological Exact Solution of Petrov Type D of a Non-Disrupted Primordial Magnetic Field and a Mixture of Dark Energy and a Nonlinear Fluid that Becomes into Radiation. Advanced Studies in Theoretical Physics 15(2021), no. 7, 333–340. doi: 10.12988/astp.2021.91519
[11] R. Alvarado, Anisotropic Cosmological Exact Solutions of Petrov Type D of a Mixture of Dark Energy and an Attractive Bose-Einstein Condensate. Advanced Studies in Theoretical Physics 17(2023), no. 3, 139–146. doi: 10.12988/astp.2023.92009
[12] R. Alvarado, A. Angulo, M. Vargas, Cosmological exact solutions of Petrov type D. a mixture of two fluids: dark energy and radiation. Revista de Matemática: Teoría y Aplicaciones 29(2022), no. 2, 225–238. doi: 10.15517/rmta.v29i2.46390
[13] L. G. Balázs et al., A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Monthly Notices of the Royal Astronomical Society 452(2015), no. 3, 2236–2246. doi: 10.1093/mnras/stv1421
[14] R. G. Clowes et al., A structure in the early universe at z ∼ 1.3 that exceeds the homogeneity scale of the RW concordance cosmology. Monthly Notices of the Royal Astronomical Society 429(2013), no. 4, 2910–2916. doi: 10.1093/mnras/sts497
[15] B. Dănilă et al., Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background. Advances in High Energy Physics 2016(2016), 7521464. doi: 10.1155/2016/7521464
[16] A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23(1981), no. 2, 347. doi: 10.1103/PhysRevD.23.347
[17] R. F. Holanda, J. A. Lima, J. V. Cunha, Accessing the Acceleration of the Universe with Sunyaev—Zeldovich and X-Ray Data from Galaxy Clusters. The Twelfth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. 2012. Vol. 1–3, 1308–1311. doi: 10.1142/9789814374552 0200
[18] I. Horvath et al., The clustering of gamma-ray bursts in the Hercules–Corona Borealis Great Wall: the largest structure in the Universe? Monthly Notices of the Royal Astronomical Society 498(2020), no. 2, 2544–2553. doi: 10.1093/mnras/staa2460
[19] A. Joyce, B. Jain, J. Khoury, M. Trodden, Beyond the cosmological standard model. Physics Reports 568(2015), 1–98. doi: 10.1016/j.physrep.2014.12.002
[20] P. Kumar Aluri et al., Is the observable Universe consistent with the cosmological principle? Classical and Quantum Gravity 40(2023), no. 9, 094001. doi: 10.1088/1361-6382/acbefc
[21] J. A. S. Lima, R. F. L. Holanda, J. V. Cunha, Are galaxy clusters suggesting an accelerating universe? AIP Conference Proceedings. 2010. Vol. 1241, 224–229. doi: 10.1063/1.3462638
[22] A. M. Lopez, R. G. Clowes, G. M. Williger, A giant arc on the sky. Monthly Notices of the Royal Astronomical Society 516(2022), no. 2, 1557–1572. doi: 10.1093/mnras/stac2204
[23] A. Lopez, R. Clowes, G. Williger, A Big Ring on the sky. Journal of Cosmology and Astroparticle Physics 2024(July 2024), no. 07, 055. doi: 10.1088/ 1475-7516/2024/07/055
[24] S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae. The Astrophysical Journal 517(1999), no. 2, 565–586. doi: 10.1086/307221
[25] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal 116(1998), no. 3, 1009–1038. doi: 10.1086/300499
[26] R. Stompor et al., Cosmological implications of the MAXIMA-1 high-resolution cosmic microwave background anisotropy measurement. The Astrophysical Journal 561(2001), no. 1, L7. doi: 10.1086/324438
[27] J. Yadav, J. Bagla, N. Khandai, Fractal dimension as a measure of the scale of homogeneity. Monthly Notices of the Royal Astronomical Society 405(2010), no. 3, 2009–2015. doi: 10.1111/j.1365-2966.2010.16612.x
[28] I. Zlatev, L. Wang, P. J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Physical Review Letters 82(1999), no. 5, 896. doi: 10.1103/PhysRevLett.82.896

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Andrés Angulo-Sibaja , Rodrigo Alvarado Marín (Autor/a)