Exact solutions and stability of a nonlinear scalar field in a Petrov Type D cosmology

Authors

  • Andrés Angulo-Sibaja Universidad de Costa Rica, Escuela de Física, San José, Costa Rica Author
  • Rodrigo Alvarado Marín Universidad de Costa Rica, Centro de Investigaciones Espaciales (CINESPA) y Escuela de Física, San José, Costa Rica Author

DOI:

https://doi.org/10.15517/qzgztp39

Keywords:

Cosmology, Exact solution, Scalar field, Einstein’s equations, Temperature, Hubble, Deceleration parameter, Kretschmann, Singularity, Jacobi stability

Abstract

We present analytical solutions for a universe with a scalar field equivalent to a mixture of three perfect fluids: dark energy, dust and stiff matter. The space-time is an anisotropic and homogenous universe of Petrov Type D that expands isotropically in two spatial axes. We also determine the singularities with the Kretschmann scalar, the Hubble parameter, the deceleration parameter, and the temperature in terms of time. Finally, we study the Jacobi stability of the universe with the scalar field and conclude that the model is stable at all times.

Downloads

Download data is not yet available.

References

[1] R. Alvarado, Cosmological Exact Solutions Set of a Perfect Fluid in an Anisotropic Space-Time in Petrov Type D. Advanced Studies in Theoretical Physics 10(2016), no. 6, 267–295. doi: 10.12988/astp.2016.6311 DOI: https://doi.org/10.12988/astp.2016.6311

[2] R. Alvarado, The Hubble constant and the deceleration parameter in anisotropic cosmological spaces of Petrov type D. Advanced Studies in Theoretical Physics 10(2016), no. 8, 421–431. doi: 10.12988/astp.2016.6930 DOI: https://doi.org/10.12988/astp.2016.6930

[3] R. Alvarado, Exact solutions of a Chaplygin gas in an anisotropic space-time of Petrov D. Advanced Studies in Theoretical Physics 11(2017), no. 12, 609–619. doi: 10.12988/astp.2017.7836 DOI: https://doi.org/10.12988/astp.2017.7836

[4] R. Alvarado, Thermodynamics and small temporal variations in the equations of state of anisotropic cosmological models of Petrov type D. Advanced Studies in Theoretical Physics 11(2017), no. 1, 9–17. doi: 10.12988/astp.2017.6932 DOI: https://doi.org/10.12988/astp.2017.6932

[5] R. Alvarado, Exact cosmological solution of a scalar field of type +cosh in anisotropic space-time of Petrov type D. Advanced Studies in Theoretical Physics 12(2018), no. 3, 121–128. doi: 10.12988/astp.2018.825 DOI: https://doi.org/10.12988/astp.2018.825

[6] R. Alvarado, Exact cosmological solutions of isobaric scalar fields in spacetimes: anisotropic of the type of Petrov D and isotropic homogeneous. Advanced Studies in Theoretical Physics 12(2018), no. 7, 319–333. doi: 10.12988/astp.2018.8937 DOI: https://doi.org/10.12988/astp.2018.8937

[7] R. Alvarado, Interactive spinorial and scalar fields congruent to the Chaplygin’s gas. Exact cosmologic solutions in a space-time of Petrov D. Advanced Studies in Theoretical Physics 12(2018), no. 7, 335–345. doi: 10.12988/astp.2018.8938 DOI: https://doi.org/10.12988/astp.2018.8938

[8] R. Alvarado, Cosmological Exact Solutions of Petrov Type D. A Mixture of Three Fluids: Quintessence, Dust and Radiation. Advanced Studies in Theoretical Physics 14(2020), no. 7, 327–334. doi: 10.12988/astp.2020.91502 DOI: https://doi.org/10.12988/astp.2020.91502

[9] R. Alvarado, Cosmological Exact Solution of Petrov Type D of a Mixture of Fluids of Dark Energy and Dust and a Non Disrupted Primordial Magnetic Field. Advanced Studies in Theoretical Physics 15(2021), no. 3, 107–114. doi: 10.12988/astp.2021.91519 DOI: https://doi.org/10.12988/astp.2021.91519

[10] R. Alvarado, Cosmological Exact Solution of Petrov Type D of a Non-Disrupted Primordial Magnetic Field and a Mixture of Dark Energy and a Nonlinear Fluid that Becomes into Radiation. Advanced Studies in Theoretical Physics 15(2021), no. 7, 333–340. doi: 10.12988/astp.2021.91519 DOI: https://doi.org/10.12988/astp.2021.91674

[11] R. Alvarado, Anisotropic Cosmological Exact Solutions of Petrov Type D of a Mixture of Dark Energy and an Attractive Bose-Einstein Condensate. Advanced Studies in Theoretical Physics 17(2023), no. 3, 139–146. doi: 10.12988/astp.2023.92009 DOI: https://doi.org/10.12988/astp.2023.92009

[12] R. Alvarado, A. Angulo, M. Vargas, Cosmological exact solutions of Petrov type D. a mixture of two fluids: dark energy and radiation. Revista de Matemática: Teoría y Aplicaciones 29(2022), no. 2, 225–238. doi: 10.15517/rmta.v29i2.46390 DOI: https://doi.org/10.15517/rmta.v29i2.46390

[13] L. G. Balázs et al., A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Monthly Notices of the Royal Astronomical Society 452(2015), no. 3, 2236–2246. doi: 10.1093/mnras/stv1421 DOI: https://doi.org/10.1093/mnras/stv1421

[14] R. G. Clowes et al., A structure in the early universe at z ∼ 1.3 that exceeds the homogeneity scale of the RW concordance cosmology. Monthly Notices of the Royal Astronomical Society 429(2013), no. 4, 2910–2916. doi: 10.1093/mnras/sts497 DOI: https://doi.org/10.1093/mnras/sts497

[15] B. Dănilă et al., Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background. Advances in High Energy Physics 2016(2016), 7521464. doi: 10.1155/2016/7521464 DOI: https://doi.org/10.1155/2016/7521464

[16] A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23(1981), no. 2, 347. doi: 10.1103/PhysRevD.23.347 DOI: https://doi.org/10.1103/PhysRevD.23.347

[17] R. F. Holanda, J. A. Lima, J. V. Cunha, Accessing the Acceleration of the Universe with Sunyaev—Zeldovich and X-Ray Data from Galaxy Clusters. The Twelfth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. 2012. Vol. 1–3, 1308–1311. doi: 10.1142/9789814374552 0200 DOI: https://doi.org/10.1142/9789814374552_0200

[18] I. Horvath et al., The clustering of gamma-ray bursts in the Hercules–Corona Borealis Great Wall: the largest structure in the Universe? Monthly Notices of the Royal Astronomical Society 498(2020), no. 2, 2544–2553. doi: 10.1093/mnras/staa2460 DOI: https://doi.org/10.1093/mnras/staa2460

[19] A. Joyce, B. Jain, J. Khoury, M. Trodden, Beyond the cosmological standard model. Physics Reports 568(2015), 1–98. doi: 10.1016/j.physrep.2014.12.002 DOI: https://doi.org/10.1016/j.physrep.2014.12.002

[20] P. Kumar Aluri et al., Is the observable Universe consistent with the cosmological principle? Classical and Quantum Gravity 40(2023), no. 9, 094001. doi: 10.1088/1361-6382/acbefc DOI: https://doi.org/10.1088/1361-6382/acbefc

[21] J. A. S. Lima, R. F. L. Holanda, J. V. Cunha, Are galaxy clusters suggesting an accelerating universe? AIP Conference Proceedings. 2010. Vol. 1241, 224–229. doi: 10.1063/1.3462638 DOI: https://doi.org/10.1063/1.3462638

[22] A. M. Lopez, R. G. Clowes, G. M. Williger, A giant arc on the sky. Monthly Notices of the Royal Astronomical Society 516(2022), no. 2, 1557–1572. doi: 10.1093/mnras/stac2204 DOI: https://doi.org/10.1093/mnras/stac2204

[23] A. Lopez, R. Clowes, G. Williger, A Big Ring on the sky. Journal of Cosmology and Astroparticle Physics 2024(July 2024), no. 07, 055. doi: 10.1088/ 1475-7516/2024/07/055 DOI: https://doi.org/10.1088/1475-7516/2024/07/055

[24] S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae. The Astrophysical Journal 517(1999), no. 2, 565–586. doi: 10.1086/307221 DOI: https://doi.org/10.1086/307221

[25] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal 116(1998), no. 3, 1009–1038. doi: 10.1086/300499 DOI: https://doi.org/10.1086/300499

[26] R. Stompor et al., Cosmological implications of the MAXIMA-1 high-resolution cosmic microwave background anisotropy measurement. The Astrophysical Journal 561(2001), no. 1, L7. doi: 10.1086/324438 DOI: https://doi.org/10.1086/324438

[27] J. Yadav, J. Bagla, N. Khandai, Fractal dimension as a measure of the scale of homogeneity. Monthly Notices of the Royal Astronomical Society 405(2010), no. 3, 2009–2015. doi: 10.1111/j.1365-2966.2010.16612.x DOI: https://doi.org/10.1111/j.1365-2966.2010.16612.x

[28] I. Zlatev, L. Wang, P. J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Physical Review Letters 82(1999), no. 5, 896. doi: 10.1103/PhysRevLett.82.896 DOI: https://doi.org/10.1103/PhysRevLett.82.896

Downloads

Published

2025-07-24

How to Cite

Exact solutions and stability of a nonlinear scalar field in a Petrov Type D cosmology. (2025). Revista De Matemática: Teoría Y Aplicaciones, 32(2), 73-89. https://doi.org/10.15517/qzgztp39