Soluciones exactas y estabilidad de un campo escalar no lineal en una cosmología de Petrov Tipo D
PDF (Inglés)

Palabras clave

Cosmología
Solución exacta
Campo escalar
Ecuaciones de Einstein
Temperatura
Hubble
Parámetro de deceleración
Kretschmann
Singularidad
Estabilidad de Jacobi

Cómo citar

Soluciones exactas y estabilidad de un campo escalar no lineal en una cosmología de Petrov Tipo D. (2025). Revista De Matemática: Teoría Y Aplicaciones, 32(2), 73-89. https://doi.org/10.15517/qzgztp39

Resumen

Se presentan soluciones analíticas para un universo con un campo escalar equivalente a una mezcla de tres fluidos perfectos: energía oscura, polvo y materia rígida. El espacio-tiempo del universo es anisotrópico y homogéneo del tipo Petrov D que se expande isotrópicamente en dos direcciones espaciales. También se determina el parámetro de Hubble, parámetro de desaceleración y la temperatura en términos del tiempo. Por último, se estudia la estabilidad de Jacobi para la evolución dinámica del universo con el campo escalar y se concluye que el modelo es estable para cualquier tiempo.

PDF (Inglés)

Referencias

[1] R. Alvarado, Cosmological Exact Solutions Set of a Perfect Fluid in an Anisotropic Space-Time in Petrov Type D. Advanced Studies in Theoretical Physics 10(2016), no. 6, 267–295. doi: 10.12988/astp.2016.6311

[2] R. Alvarado, The Hubble constant and the deceleration parameter in anisotropic cosmological spaces of Petrov type D. Advanced Studies in Theoretical Physics 10(2016), no. 8, 421–431. doi: 10.12988/astp.2016.6930

[3] R. Alvarado, Exact solutions of a Chaplygin gas in an anisotropic space-time of Petrov D. Advanced Studies in Theoretical Physics 11(2017), no. 12, 609–619. doi: 10.12988/astp.2017.7836

[4] R. Alvarado, Thermodynamics and small temporal variations in the equations of state of anisotropic cosmological models of Petrov type D. Advanced Studies in Theoretical Physics 11(2017), no. 1, 9–17. doi: 10.12988/astp.2017.6932

[5] R. Alvarado, Exact cosmological solution of a scalar field of type +cosh in anisotropic space-time of Petrov type D. Advanced Studies in Theoretical Physics 12(2018), no. 3, 121–128. doi: 10.12988/astp.2018.825

[6] R. Alvarado, Exact cosmological solutions of isobaric scalar fields in spacetimes: anisotropic of the type of Petrov D and isotropic homogeneous. Advanced Studies in Theoretical Physics 12(2018), no. 7, 319–333. doi: 10.12988/astp.2018.8937

[7] R. Alvarado, Interactive spinorial and scalar fields congruent to the Chaplygin’s gas. Exact cosmologic solutions in a space-time of Petrov D. Advanced Studies in Theoretical Physics 12(2018), no. 7, 335–345. doi: 10.12988/astp.2018.8938

[8] R. Alvarado, Cosmological Exact Solutions of Petrov Type D. A Mixture of Three Fluids: Quintessence, Dust and Radiation. Advanced Studies in Theoretical Physics 14(2020), no. 7, 327–334. doi: 10.12988/astp.2020.91502

[9] R. Alvarado, Cosmological Exact Solution of Petrov Type D of a Mixture of Fluids of Dark Energy and Dust and a Non Disrupted Primordial Magnetic Field. Advanced Studies in Theoretical Physics 15(2021), no. 3, 107–114. doi: 10.12988/astp.2021.91519

[10] R. Alvarado, Cosmological Exact Solution of Petrov Type D of a Non-Disrupted Primordial Magnetic Field and a Mixture of Dark Energy and a Nonlinear Fluid that Becomes into Radiation. Advanced Studies in Theoretical Physics 15(2021), no. 7, 333–340. doi: 10.12988/astp.2021.91519

[11] R. Alvarado, Anisotropic Cosmological Exact Solutions of Petrov Type D of a Mixture of Dark Energy and an Attractive Bose-Einstein Condensate. Advanced Studies in Theoretical Physics 17(2023), no. 3, 139–146. doi: 10.12988/astp.2023.92009

[12] R. Alvarado, A. Angulo, M. Vargas, Cosmological exact solutions of Petrov type D. a mixture of two fluids: dark energy and radiation. Revista de Matemática: Teoría y Aplicaciones 29(2022), no. 2, 225–238. doi: 10.15517/rmta.v29i2.46390

[13] L. G. Balázs et al., A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Monthly Notices of the Royal Astronomical Society 452(2015), no. 3, 2236–2246. doi: 10.1093/mnras/stv1421

[14] R. G. Clowes et al., A structure in the early universe at z ∼ 1.3 that exceeds the homogeneity scale of the RW concordance cosmology. Monthly Notices of the Royal Astronomical Society 429(2013), no. 4, 2910–2916. doi: 10.1093/mnras/sts497

[15] B. Dănilă et al., Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background. Advances in High Energy Physics 2016(2016), 7521464. doi: 10.1155/2016/7521464

[16] A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23(1981), no. 2, 347. doi: 10.1103/PhysRevD.23.347

[17] R. F. Holanda, J. A. Lima, J. V. Cunha, Accessing the Acceleration of the Universe with Sunyaev—Zeldovich and X-Ray Data from Galaxy Clusters. The Twelfth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. 2012. Vol. 1–3, 1308–1311. doi: 10.1142/9789814374552 0200

[18] I. Horvath et al., The clustering of gamma-ray bursts in the Hercules–Corona Borealis Great Wall: the largest structure in the Universe? Monthly Notices of the Royal Astronomical Society 498(2020), no. 2, 2544–2553. doi: 10.1093/mnras/staa2460

[19] A. Joyce, B. Jain, J. Khoury, M. Trodden, Beyond the cosmological standard model. Physics Reports 568(2015), 1–98. doi: 10.1016/j.physrep.2014.12.002

[20] P. Kumar Aluri et al., Is the observable Universe consistent with the cosmological principle? Classical and Quantum Gravity 40(2023), no. 9, 094001. doi: 10.1088/1361-6382/acbefc

[21] J. A. S. Lima, R. F. L. Holanda, J. V. Cunha, Are galaxy clusters suggesting an accelerating universe? AIP Conference Proceedings. 2010. Vol. 1241, 224–229. doi: 10.1063/1.3462638

[22] A. M. Lopez, R. G. Clowes, G. M. Williger, A giant arc on the sky. Monthly Notices of the Royal Astronomical Society 516(2022), no. 2, 1557–1572. doi: 10.1093/mnras/stac2204

[23] A. Lopez, R. Clowes, G. Williger, A Big Ring on the sky. Journal of Cosmology and Astroparticle Physics 2024(July 2024), no. 07, 055. doi: 10.1088/ 1475-7516/2024/07/055

[24] S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae. The Astrophysical Journal 517(1999), no. 2, 565–586. doi: 10.1086/307221

[25] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal 116(1998), no. 3, 1009–1038. doi: 10.1086/300499

[26] R. Stompor et al., Cosmological implications of the MAXIMA-1 high-resolution cosmic microwave background anisotropy measurement. The Astrophysical Journal 561(2001), no. 1, L7. doi: 10.1086/324438

[27] J. Yadav, J. Bagla, N. Khandai, Fractal dimension as a measure of the scale of homogeneity. Monthly Notices of the Royal Astronomical Society 405(2010), no. 3, 2009–2015. doi: 10.1111/j.1365-2966.2010.16612.x

[28] I. Zlatev, L. Wang, P. J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Physical Review Letters 82(1999), no. 5, 896. doi: 10.1103/PhysRevLett.82.896

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2025 Andrés Angulo-Sibaja , Rodrigo Alvarado Marín (Autor/a)

##plugins.themes.healthSciences.displayStats.downloads##

##plugins.themes.healthSciences.displayStats.noStats##