Skip to main navigation menu Skip to main content Skip to site footer

Scientific Papers

Vol. 18 No. 32 (2016): Journal 32

Determination of vehicle wheel wander for urban roadways in Costa Rica

DOI:
https://doi.org/10.15517/y9k65466
Submitted
November 5, 2025
Published
2025-11-07

Abstract

The main objective of this project consists in estimate a value of wheel wander representative of Costa Rican roadways, which could be used for pavements design and testing. In order to achieve the objective, wheel wander was measured and computed in 6 different stations with similar characteristics located in national routes from the Great Metropolitan Area of Costa Rica.

Wheel wander is the scatter of vehicles along the length of the lane. Drivers usually follow a normal distribution pattern. In the wheel paths that most drivers follow, traffic load will be higher causing rutting in the pavement. Therefore, in roadways where wheel wander is high, the traffic load is distributed along the lane width, increasing the design life.

For each station only the outer lane, the closest to the camera, was used. These stations are located in National Route 3, National Route 2, National Route 202, National Route 32, National Route 39 and National Route 108.These routes were chosen because of their high truck traffic volume. In each station, a camera was placed roadside. Also lines were drawn covering more than the half of the lane cross section. The position of both heavy and light vehicles was measured.

Standard deviation and confidence interval for variance equations were used to determine the wheel wander. Results show that the mean and 95% confidence interval of wheel wander is drastically higher that the value of 10 cm used by the LanammeUCR for accelerated pavements testing.

References

  1. Agresti, A., & Finlay, B. (1999). Statistical methods for the social sciences. New Jersey: Prentice Hall.
  2. Anderson, D., Sweeney, D., & Williams, T. (2004). Estadística para administración y economía. Mexico: Thomson.
  3. Ávila, T., Badilla, G., & Aguiar, J. P. (2013). Calibración de modelo de serviciabilidad de pavimentos flexibles de AASHTO para Costa Rica. San José, Costa Rica: Programa de Infraestructura del Transporte (PITRA).
  4. Badilla, G. (2009). Determinación de la regularidad superficial de pavimentos mediante el cálculo de índice de regularidad internacional (IRI): Aspectos y consideraciones importantes. San José, Costa Rica: Laboratorio Nacional de Materiales y Modelos Estructurales.
  5. Blab, R., & Litzka, J. (1995). Measurement of lateral distribution of heavy vehicles and its effect on design of road pavements. Vienna, Austria: University of Technology.
  6. Consejo de Directores de Carreteras de Iberia e Iberoamérica. (2002). Catálogo de deterioros de pavimentos flexibles. México.
  7. Diesel San Miguel. (2015). Camiones: Dimensiones (mm). Recuperado el Mayo de 2015, de http://dieselsanmiguel.com.ar/
  8. Dirección de Planificación Sectorial del MOPT. (2015). T.P.D. Histórico de una estación de conteo vehicular. San José: Ministerio de Obras Públicas y Transporte.
  9. Epidat. (2014). Distribución de probabilidad. Recuperado el Setiembre de 2014, de Dirección Xeral de Saúde Pública de la Xunta de Galicia: http://www.sergas.es
  10. Fitzpatrick, C., Harrington, C., & Knodler Jr., M. A. (2013). The effects of clear zone size amd roadside vegetation on driver behavior. Massachusetts, USA: Transportation Research Board: 93rd Annual Meeting.
  11. Ledesma, A. (2015). Estimación de varianza y proporciones poblacionales mediante intervalos de confianza. Obtenido de Facultad de Ingeniería Universidad de la Plata: http://www.ing.unlp.edu.ar
  12. Leiva, F., Aguiar, J., & Loría, L. G. (2015). Status of the first experiment at the Pavelab. Recuperado el Noviembre de 2015, de http://www.pavetrack.com
  13. Ministerio de Obras Públicas y Transporte (MOPT). (2003). Reglamento de circulación por carretera con base en el peso y las dimensiones de los vehículos de carga. San José, Costa Rica: Decreto Ejecutivo No. 31363-MOPT.
  14. Minitab. (2015). Análisis de capacidad. Recuperado el Noviembre de 2015, de Soporte de minitab: http://support.minitab.com/
  15. National Cooperative Highway Research Program (NCHRP). (2004). Guide for Mechanistical Empirical Design of new and rehabilitated pavement structures. IIlinois.
  16. Oscarsson, E. (2011). Mechanistical-Empirical Modeling of Permanent Deformation in Asphalt Concrete Layers. Lund, Suecia: Universidad de Lund.
  17. REENFRIO. (2015). Productos. Recuperado el Noviembre de 2015, de http://www.reenfriocr.com/
  18. Secretaría de Integración Económica Centroaméricana (SIECA). (2000). Catálogo Centroamericano de daños a pavimentos viales. Guatemala.
  19. Secretaría de Integración Económica Centroamericana (SIECA). (2002). Manual centroamericano para diseño de pavimentos. Guatemala.
  20. Stemphihar, J., Williams, R. C., & Drummer, T. (2005). Quantifying the lateral displacement of trucks for use in pavements design. Michigan: Michigan Technological University.
  21. Timm, D., & Priest, A. (2005). Wheel wander at the NCAT test track. Auburn, USA: National Center for Asphalt Technology.
  22. Zuñiga, J. C., & Trejos, J. L. (2011). Conteos vehiculares. Recuperado el Setiembre de 2014, de Ministerio de Obras Públicas y Transporte: http://mopt.go.cr/

Downloads

Download data is not yet available.