Skip to main navigation menu Skip to main content Skip to site footer

Scientific Papers

Vol. 18 No. 32 (2016): Journal 32

Identifying dangerous routes through safety performance functions: case of Costa Rica

DOI:
https://doi.org/10.15517/3k1k2p81
Submitted
November 7, 2025
Published
2025-11-07

Abstract

Road network screening is fundamental to reduce the frequency and severity of road crashes. For this purpose it is necessary to have a detailed crash database and an updated road inventory, which are not available in Costa Rica. Recently, macro-level crash models have become popular, since their level of aggregation have lower information requirements; they can be used to develop Safety Performance Functions (SPF) at route level. Using these SPFs routes with excess crash frequency can be identified and a detail safety screening can be performed on those routes. This study seeks to identify the most dangerous routes in Costa Rica using the SPFs and the Empirical Bayes method. The results show that the Negative Binomial model is appropriate to represent the SPFs for routes in Costa Rica since it considers the exposure and over-dispersion present in the data. In addition, the model indicates that the most dangerous routes in Costa Rica in terms of excess deaths are the Route 32, followed by Route 2, Route 4, Route 1 and Route 34. The other 5 routes completing the 10 most dangerous are in order Route 35, Route 21, Route 36, Route 27 and Route 6.

References

  1. AASHTO.(2010). Highway Safety Manual. American Association of State and Highway Transportation Officials, Washington D.C. USA.
  2. Aguero-Valverde, J. 2013. Multivariate spatial models of excess crash frequency at area level: Case of Costa Rica. Accident Analysis and Prevention, 59, 365-373.
  3. Aguero-Valverde, J., Jovanis, P.P. (2006). Spatial analysis of fatal and injury crashes in Pennsylvania. Accident Analysis and Prevention, 38 (3), 618-625.
  4. Barnett, A. G., van der Pols, J. C., & Dobson, A. J. (2005). Regression to the mean: what it is and how to deal with it. International Journal of Epidemiology, 34(1), 215-220.
  5. Castro, E.A., Agüero-Valverde, J. (2015). Aplicación del método Bayes empírico en análisis de seguridad vial: el caso de la ruta 32 en Costa Rica. Revista Ingeniería, 25 (1), pp 13-33.
  6. COSEVI (2015). Muertos en sitio por ruta. Área de Investigación y Estadística.
  7. Evans, L. (2004). Traffic safety.Science Serving Society.MI, USA
  8. Hadayeghi, A., Shalabyb, A.S., Persaud., B.N. (2010). Development of planning level transportation safety tools using Geographically Weighted Poisson Regression. Accident Analysis and Prevention, 42 (2), 676–688.
  9. Hakkert, A. S., Braimaister, L., & Van Schagen, I. (2002). The uses of exposure and risk in road safety studies (Vol. 2002, No. 12). SWOV Institute for Road Safety.
  10. Hauer, E. (1992). Empirical Bayes approach to the estimation of “unsafety”: the multivariate regression method. Accident Analysis & Prevention, 24(5), 457-477.
  11. Hauer, E. (1995). On exposure and accident rate. Traffic engineering & control, 36(3), 134-138.
  12. Hauer, E. (1997). Observational Before/After Studies in Road Safety.Estimating the Effect of Highway and Traffic Engineering Measures on Road Safety.Emeral, IWA, UK
  13. Hauer, E., Harwood, D., Council, F., & Griffith, M. (2002).Estimating safety by the empirical Bayes method: a tutorial. Transportation Research Record, 1784, 126-131.
  14. Huang H., Darwiche, A.L., Abdel-Aty, M.A. (2010). County-Level Crash Risk Analysis in Florida: Bayesian Spatial Modeling. TransportationResearch Record, 2148, 27-37.
  15. INEC (2014). Unidad de Estadísticas Demográficas - Defunciones (2000-2014) http://www.inec.go.cr/bincri/RpWebEngine.exe/Portal?BASE=VITDEF
  16. Jovanis, P. P., & Chang, H. L. (1986). Modeling the relationship of accidents to miles traveled. Transportation Research Record, 1068, 42-51.
  17. MacNab, Y.C. (2004). Bayesian spatial and ecological models for small-area accident and injury analysis.Accident Analysis and Prevention, 36 (6), 1019–1028.
  18. Miaou S-P., Lord, D. (2003). Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form and Bayes versus empirical Bayes.TransportationResearch Record 1840, 31- 40.
  19. MOPT (2012). Anuario de Información de Tránsito 2012, Departamento de Planificación Sectorial
  20. MOPT (2013). Anuario de Información de Tránsito 2013, Departamento de Planificación Sectorial
  21. MOPT (2014). Red Vial Cantonal Longitud Total - Longitud para la Distribución de Fondos Ley 8114 - Resumen Por Cantón 2014 http://mopt.go.cr/carreteras/RVC.pdf
  22. Qin, X., Ivan, J. N., & Ravishanker, N. (2004). Selecting exposure measures in crash rate prediction for two-lane highway segments. Accident Analysis & Prevention, 36(2), 183-191.
  23. Quddus M.A. (2008). Modeling area-wide count outcomes with spatial correlation and heterogeneity: an analysis of London crash data.Accident Analysis and Prevention, 40(4), 1486-1497.
  24. Shankar, V., Mannering, F., & Barfield, W. (1995).Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accident Analysis & Prevention, 27(3), 371-389.
  25. Shinar, D. (1978). Psychology on the road.The human factor in traffic safety. John Wiley & Sons, NJ, USA.
  26. Siddiqui, C., Abdel-Aty, M.A., Choi.K., (2012). Macroscopic spatial analysis of pedestrian and bicycle crashes. Accident Analysis and Prevention, 45 (1), 382-391.
  27. Toroyan, T. (2013).Global status report on road safety 2015. Supporting a decade of action. Geneva: World Health Organization, Department of Violence and Injury Prevention and Disability.
  28. (PIARC) (2003).Road Safety Manual, World Road Association Paris, Francia.

Downloads

Download data is not yet available.