Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Estimación de modelos de equilibrio general en economías dinámicas por métodos de Monte Carlo y Cadenas de Markov
PDF

Palabras clave

General equilibrium models
Bayesian inference
recursive algorithms
modelos de equilibrio general
inferencia bayesiana
algoritmos recursivos

Cómo citar

Estévez, G., Infante, S., & Sáez, F. (2012). Estimación de modelos de equilibrio general en economías dinámicas por métodos de Monte Carlo y Cadenas de Markov. Revista De Matemática: Teoría Y Aplicaciones, 19(1), 7–36. https://doi.org/10.15517/rmta.v19i1.2102

Resumen

En este trabajo se describe un procedimiento general para hacer inferencia bayesiana basados en la evaluación de la verosimilitud de los modelos de equilibrio general estocásticos (MEGE) a través de los métodos de Monte Carlo por Cadenas de Markov (MCMC). La metodología propuesta requiere log linealizar los modelos, transformarlos en la forma espacio estado, luego utilizar el filtrode Kalman para evaluar la función de verosimilitud y finalmente aplicar el algoritmo Metropolis Hastings para estimar los parámetros de la distribución a posteriori. Se ilustra la técnica mediante el uso del modelo básico de crecimiento estocástico, considerando datos trimestrales de la economía venezolana comprendidos entre el primer trimestre de (1984) hasta el tercer trimestre de (2004). El análisis empírico realizado nos permite concluir que los algoritmos utilizados para estimar los parámetros del modelo trabajan de manera eficiente y a bajo costo computacional, las estimaciones obtenidas son consistentes, es decir, los estimados de las predicciones reflejan adecuadamente el comportamiento del producto, el empleo, el consumo y la inversión per capita del país. En las gráficas de los histogramas estimados se observa que tienen comportamientos bimodales y distribuciones asimétricas.

https://doi.org/10.15517/rmta.v19i1.2102
PDF

Citas

Basdevant, O. (2003) “On applications of state-space modeling in macroeconomics”, Discussion Paper Series, Reserve Bank of New Zeland, DP2003/02 : 1–30.

Cass, D. (1965) “Optimum growth in an aggregative model of capital accumulation”, Review of Economic Studies 32(3): 233-240.

Chib, S.; Greenberg, E. (1995) “Understanding the Metropolis-Hasting algorithm”, The American Statistical Association 49: 327–335.

Christiano, L.; Eichenbaum, M.; Evans, C. (2001) “Nominal rigidities and the dynamic effects of a shock to a monetary policy”, Working Paper no. 8403, NBER, Cambridge, MA.

Cooley, T.; Prescott, E. (1995) Economic growth and business cycles. In: T.F. Cooley (Ed.) Frontiers of Business Cycle Research. Princenton University Press, Princeton NJ.

De Jong, D.; Ingram, B.; Whiteman, C. (2000) “A Bayesian approach to dynamic macroeconomics”, Journal of Econometrics 98: 203–223.

Fernández-Villaverde, J.; Rubio-Ramı́rez, J.F. (2004) “Comparing dynamic equilibrium models to data: a Bayesian approach”, Journal of Econometrics 123(1): 153–187.

Fernández-Villaverde, J.; Rubio-Ramı́rez, J.F. (2005) “Estimating dynamic equilibrium economies: linear versus nonlinear likelihood”, Journal of Applied Econometrics 20(7): 891–910.

Fernández-Villaverde, J.; Rubio-Ramı́rez, J. (2006) “Solving DSGE models with perturbation methods and a change of variables”, Journal of Economic Dynamics and Control 30(12): 2559–2531.

Fernández-Villaverde, J.; Rubio-Ramı́rez, J.; Sargent, T.; Watson, M. (2007) “A,B,C´s (and D)´s for understanding VARs”, The American Economic Review 97(3): 1021–1026.

Geweke, J. (1998) “Using simulation methods for Bayesian econometrics models: inference, development and communication”, Federal Reserve Bank of Minneapolis Research Department Staff Report 249.

Hastings, W. (1970) “Monte Carlo sampling methods using Markov Chains and their applications”, Biometrika 57(1): 97–109.

Harvey, A. (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge.

Kalman, R. (1960) “A new approach to linear filtering and prediction problems”, J. Basic Engineering82 series D: 35–45.

Koopmans, T. (1965) On the Concept of Optimal Economic Growth. The Econometric Approach to Development Planning. North Holland, Amsterdam.

Koopman, S.; Bos, C. (2004) “State space models with a common stochastic variance”, Journal of Business and Economic Statistics 22(3): 346–357.

Landon, L. (1999) Bayesian Comparison of Dynamic Macroeconomic Models. Ph.D Thesis, University of Minnesota.

Metropolis N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E. (1953) “Equation of state calculations by fast computing machines”, The Journal of Chemical Physics 21(6): 1087–1092.

Ord, J.; Koehler, A.; Snyder, R. (1997) “Estimation and prediction for a class of dynamic nonlinear statistical models”, Journal of the American Statistical Association 92(440): 1621–1629.

Otrok, C. (2001) “On measuring the welfare cost of business cycles”, Journal of Monetary Economics 47(1): 61–92.

Rabanal, P.; Rubio, J. (2005) “Comparing new Keynesian models of the business cycle: a Bayesian approach”, Journal of Monetary Economics 52(6): 1151–1166.

Sargent, T. (1989) “Two models of measurements and the investment accelerator”, The Journal of Political Economy 97(2): 251–287.

Schorfheide, F. (2000) “Loss function-based evaluation of DSGE models”, Journal of Applied Econometrics 15(6): 645–670.

Smets, F.; Wouters, R. (2003) Shocks and frictions in US business cycles: a Bayesian DSGE approach. Mimeo. European Central Bank, Frankfurt, 58 pages. In: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1687574.

Uhlig, H. (1995) A toolkit for analyzing nonlinear dynamic stochastic models easily. Discussion Paper 1010, Institute for Empirical Macroeconomics, Federal Reserve Bank of Minneapolis, 22 pages.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.