Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Effect of Energy Level of Photobiomodulation Therapy on Bone Repair in Rats
PDF
HTML
EPUB

Keywords

Bone; Low level laser (light) therapy; Osteoblasts; Osteocytes; Photobiomodulation.
Hueso; Terapia con láser de bajo intensidad; Osteoblastos; Osteocitos; Fotobiomodulación.

How to Cite

Cubas-Mogollón, J. W., Jiménez-Sánchez, S. M., Ruiz-Ramírez, E., Erazo-Paredes, C. H., & Aguirre-Siancas, E. E. (2023). Effect of Energy Level of Photobiomodulation Therapy on Bone Repair in Rats. Odovtos - International Journal of Dental Sciences, 25(3), 43–54. https://doi.org/10.15517/ijds.2023.54077

Abstract

The aim of this experimental study was to determine the effect of photobiomodulation therapy on bone repair in a rat tibia osteotomy model at 15 and 30 days. The sample consisted of 36 male Holtzman rats that were randomized into 6 equal groups. Groups A1 and A2: osteotomy + 1 J laser energy. Groups B1 and B2: osteotomy + 3 J laser energy. Groups C1 and C2 (controls): osteotomy only. The bone repair was analyzed by histological evaluation of osteoblasts and osteocytes both at 15 days (groups A1, B1, and C1) and at 30 days (groups A2, B2, and C2). Within the results, in all groups a greater number of osteoblasts was found at 15 days vs 30 days (p<0.05), and a greater number of osteocytes in B1 and C2 vs B2 and C1, respectively (p<0.05). When evaluating the 3 groups worked up to 15 days, more osteoblasts were found in A1 and C1 vs B1 (p<0.001); and osteocytes predominated in A1 and B1 vs C1 (p<0.001). At 30 days there was a greater quantity of osteoblasts in C2 vs A2 and B2 (p<0.05) and of osteocytes in C2 vs B2 (p<0.05). It is concluded that 1 J photobiomodulation therapy improved bone repair at 15 days; however, this improvement was not observed at 30 days because there were no differences between the irradiated groups and the control.

https://doi.org/10.15517/ijds.2023.54077
PDF
HTML
EPUB

References

Hosseinpour S., Fekrazad R., Arany P., Ye, Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. Prog Biophysd Mol Biol. 2019; 149: 147-159

Nica D., Heredea E., Todea D. Alveolus soft and bone tissue regeneration after laser biomodulation - a histological study. Rom J Morphol Embryol. 2019; 60 (4): 1269-1273.

Karu T.I. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life. 2010; 62 (8): 607-610.

De Freitas L., Hamblin M. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016; 22 (3): 7000417.

Hamblin M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics. 2017; 4 (3): 337-361.

Ustaoglu G., Ercan E., Tunali, M. Low-level laser therapy in enhancing wound healing and preserving tissue thickness at free gingival graft donor sites: a randomized, controlled clinical study. Photomed Laser Surg. 2017; 35: 223-230.

Dostalova T., Kroulikova V., Podzimek S., Jelinkov H. Low-level laser therapy after wisdom teeth surgery: evaluation of immunologic markers (secretory immunoglobulin and lysozyme levels) and thermographic examination: placebo controlled study. Photomed Laser Surg. 2017; 35: 616-621.

Escudero J., Perez M., de Oliveira Rosso M., Buchaim V., Pomini K., Campos L., Audi M., Buchaim R. Photobiomodulation therapy (PBMT) in bone repair: A systematic review. Injury. 2019; 50 (11): 1853-1867.

Hanna R., Dalvi S., Amaroli A., De Angelis N., Benedicenti S. Effects of photobiomodulation on bone defects grafted with bone substitutes: A systematic review of in vivo animal studies. J Biophotonics. 2021; 14 (1): e202000267.

Chumpitaz Cerrate V., Franco Quino C., Aguirre Siancas E. Influence of ambient oxygen pressure on guided bone regeneration. Rev. Clin. Periodoncia Implantol. Rehabil. Oral. 2017; 10 (2): 111-114.

Setiawati R., Rahardjo P. Bone Development and Growth. In Osteogenesis and Bone Regeneration. Londres: IntechOpen; 2018.

De Almeida J., De Moraes R., Gusman D., Faleiros P., Nagata M., Garcia V., Theodoro L., Bosco A. Influence of low-level laser therapy on the healing process of autogenous bone block grafts in the jaws of systemically nicotine-modified rats: A histomorphometric study. Arch Oral Biol. 2017; 75: 21-30.

Zaky A., El Shenawy H., Harhsh T., Shalash M., Awad N. Can Low Level Laser Therapy Benefit Bone Regeneration in Localized Maxillary Cystic Defects? - A Prospective Randomized Control Trial. Open access Maced J Med. 2016; 4 (4): 720-725.

Amaroli A., Agas D., Laus F., Cuteri V., Hanna R., Sabbieti M., Benedicenti S. The Effects of Photobiomodulation of 808 nm Diode Laser Therapy at Higher Fluence on the in Vitro Osteogenic Differentiation of Bone Marrow Stromal Cells. Front Physiol. 2018; 9: 123.

Hanna R., Agas D., Benedicenti S., Ferrando S., Laus F., Cuteri V., Lacava G., Sabbieti M., Amaroli A. A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece With Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation. Front Endocrinol (Lausanne). 2019; 10: 92.

De Paiva P., Casalechi H., Tomazoni S., Machado C., Miranda E., Ribeiro N., Pereira A., da Costa A., Dias L., Souza B., Aguiar Lino M., de Carvalho P. & Leal-Junior E. Effects of photobiomodulation therapy in aerobic endurance training and detraining in humans: Protocol for a randomized placebo-controlled trial. Medicine (Baltimore). 2019; 98 (18): e15317.

Jenkins P., Carroll J. How to Report Low-Level Laser Therapy (LLLT)/Photomedicine Dose and Beam Parameters in Clinical and Laboratory Studies. Photomed Laser Surg. 2011; 29 (12): 785-787.

Llapapasca Cruz C., De la Torre F., Jiménez Sánchez S., Mallma Medina A., Ruiz Ramirez E., Valdez Jurado F. Efecto del láser terapéutico infrarrojo en la reparación ósea post-exodoncia en ratas albinas. Rev. Estomatol. Herediana. 2017; 27 (2): 101-110.

Atasoy K.T., Korkmaz Y.T., Odaci E., Hanci H. The efficacy of low-level 940 nm láser therapy with different energy intensities on bone healing. Braz. Oral Res. 2017; 31: 1-9.

Çırak E., Özyurt A., Peker T., Ömeroğlu S., Güngör M. Comparative evaluation of various low-level laser therapies on bone healing following tooth extraction: An experimental animal study. J Craniomaxillofac Surg. 2018; 46 (7): 1147-1152.

Desai S., Mudda J., Patil V., Maharudrappa, Satish B. Effect of irradiation of 810nm laser on bone for 10 sec: A rabbit histological study. IOSR-JDMS. 2019; 18 (3): 14-20.

Abdel Hamid M., Zaied A., Zayet M., Abdelmageed H., Hassan E., Amaroli A. Efficacy of Flat-Top Hand-Piece Using 980 nm Diode Laser Photobiomodulation on Socket Healing after Extraction: Split-Mouth Experimental Model in Dogs. Photochem Photobiol. 2020; 97: 627-633.

Brito G., Macedo F., Moura J., de Carvalho M. Effectiveness of gallium and aluminum Arsenide laser in bone repair. BJHR. 2021; 4 (2): 5301-5315.

Tim C.; Bossini P.; Kido H., Malavazi I., Von Zeska Kress M.; Carazzolle M., Parizotto N., Rennó A. Effects of low-level laser therapy on the expression of osteogenic genes during the initial stages of bone healing in rats: a microarray analysis. Lasers Med Sci. 2015; 30 (9): 2325-2333.

Carneiro V.S.M., Jr. F.dA.L., Gerbi M.E.M., Menezes R.F.d., SantosNeto A.Pd., Araújo N.C. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats. 2016. Proc. SPIE 9692, Lasers in Dentistry XXII.

Fernandes K.R., Magri A.M.P., Kido H.W., et al. Biosilicate/PLGA osteogenic effects modulated by laser therapy: in vitro and in vivo studies. J Photochem Photobiol B. 2017; 173: 258-265.

Gabbai-Armelin P.R., Caliari H.M., Silva D.F., et al. Association of Bioglass/collagen/magnesium composites and low level irradiation: effects on bone healing in a model of tibial defect in rats. Laser Ther. 2018; 27 (4): 271-282.

De Oliveira G., Aroni M., Medeiros M., Marcantonio E., Marcantonio R. Effect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. In vivo study in rats. Lasers Surg. Med. 2018; 50 (6): 651-660.

Yılmaz B., Akman A., Çetinkaya A., Colak C., Yildirim B., Yucel O., Guncu G. & Nohutcu R. In vivo efficacy of low-level laser therapy on bone regeneration. Lasers Med Sci. 2022; 37: 2209-2216

Chumpitaz-Cerrate V., Chávez-Rimache L., Franco-Quino C., Aguirre-Siancas E., Caldas-Cueva V., Ruiz Ramirez, E. Effects of NSAIDs and environmental oxygen pressure on bone regeneration. J Oral Res 2019; 8 (2): 152-158.

Esteves J.C., de Souza Faloni A.P., Macedo P.D., Nakata P.B., Chierici Marcantonio R.A., Intini G, Marcantonio E. Effects on Bone Repair of Osteotomy With Drills or With Erbium, Chromium: Yttrium-Scandium-Gallium-Garnet Laser: Histomorphometric and Immunohistochemical Study. J Periodontol. 2016, 87 (4): 452-460.

Chumpitaz-Cerrate V., Chávez-Rimache L., Aguirre-Siancas E., Franco-Quino C., Ruiz-Ramirez E., Paredes-Erazo C. Biochemical and histopathological effects of diclofenac and ketoprofen administration on bone regeneration. Braz Dent Sci. 2021; 24 (3): 1-8.

Chumpitaz-Cerrate V., Chávez-Rimache L., Franco-Quino C., Ruiz Ramirez, E., Aguirre-Siancas E., Paredes Erazo C. Effects of salbutamol, montelukast and prednisone on orthodontic tooth movement in rats. Braz Dent Sci. 2021; 24 (2): 1-9.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 CC-BY-NC-SA 4.0

Downloads

Download data is not yet available.