Abstract
The success of tissue engineering in combination with tissue regeneration depends on the behavior and cellular activity in the biological processes developed within a structure that functions as a support, better known as scaffolds, or directly at the site of the injury. The cell-cell and cell-biomaterial interaction are key factors for the induction of a specific cell behavior, together with the bioactive factors that allow the formation of the desired tissue. Mesenchymal Stem Cells (MSC) can be isolated from the umbilical cord and bone marrow; however, the behavior of Dental Pulp Stem Cells (DPSC) has been shown to have a high potential for the formation of bone tissue, and these cells have even been able to induce the process of angiogenesis. Advances in periodontal regeneration, dentin-pulp complex, and craniofacial bone defects through the induction of MSC obtained from tooth structures in in vitro-in vivo studies have permitted the obtaining of clinical evidence of the achievements obtained to date.
References
Langer R., Vacanti J. P. Tissue engineering. Science. 1993; 260 (5110): 920-6.
Li W. J., Tuli R., Okafor C., Derfoul A., Danielson K. G., Hall D. J., et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005; 26 (6): 599-09.
Mason C., Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008; 3: 1-5.
Payne K. F., Balasundaram I., Deb S., Di Silvio L., Fan K. F. Tissue engineering technology and its possible applications in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2014; 52 (1): 7-15.
Miran S., Mitsiadis T. A., Pagella P. Innovative dental stem cell-based research approaches: The future of dentistry. Stem Cells Int. 2016; doi.org/10.1155/2016/7231038
Gronthos S., Mankani M., Brahim J., Robey P. G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci. 2000; 97(25): 13625-30.
Gronthos S., Brahim J., Li W., Fisher L. W., Cherman N., Boyde A., et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002; 81 (8): 531-5.
Sonoyama W., Liu Y., Fang D., Yamaza T., Seo B. M., Zhang C. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS One. 2006; doi.org/10.1371/journal.pone.0000079
Seo B. M., Miura M., Gronthos S., Bartold P. M., Batouli S., Brahim J., et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004; 364 (9429): 149-55.
Morsczeck C., Götz W., Schierholz J., Zeilhofer F., Kühn U., Möhl C., et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005; 24 (2): 155-65.
Musumeci G., Castrogiovanni P., Leonardi R., Trovato F. M., Szychlinska M. A., Di Giunta A., et al. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review. World J Orthop. 2014; 5 (2): 80-8.
Leach J. K., Whitehead J. Materials-directed differentiation of mesenchymal stem cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng. 2018; 9; (4): 1115-27.
Fujii Y., Kawase K. Y., Hojo H., Yano F., Sato M., Chung U. I., et al. Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cell-sheet technology. Stem Cell Res Ther. 2018; 9 (1): 24.
Tomasello L., Mauceri R., Coppola A., Pitrone M., Pizzo G., Campisi G., et al. Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: a potential application for bone formation. Stem Cell Res Ther. 2017; 8 (1): 179.
Kouhestani F., Dehabadi F., Hasan S. M., Motamedian S. R. Allogenic vs. synthetic granules for bone tissue engineering: an in vitro study. Prog Biomater. 2018; 7 (2): 133-41.
Houshmand B., Tabibzadeh Z., Motamedian S. R., Kouhestani F. Effect of metformin on dental pulp stem cells attachment, proliferation and differentiation cultured on biphasic bone substitutes. Arch Oral Biol. 2018; 18; 95: 44-50.
Yasui T., Mabuchi Y., Morikawa S., Onizawa K., Akazawa C., Nakagawa T., et al. Isolation of dental pulp stem cells with high osteogenic potential. Inflamm Regen. 2017; 10; 37:8.
Fernandes T. L., Shimomura K., Asperti A., Pinheiro C. C. G., Caetano H. V. A., Oliveira C. R. G. C. M. Development of a novel large animal model to evaluate human dental pulp stem cells for articular cartilage treatment. Stem Cell Rev. 2018; 14(5): 734-43.
Lei M., Li K., Li B., Gao L. N., Chen F. M., Jin Y. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials. 2014; 35 (24): 6332-43.
Asutay F., Polat S., Gül M., Subaşı C., Kahraman S. A., Karaöz E. The effects of dental pulp stem cells on bone regeneration in rat calvarial defect model: Micro-computed tomography and histomorphometric analysis. Arch Oral Biol. 2015; 60 (12): 1729-35.
Bottino M. C., Yassen G. H., Platt J. A., Labban N., Windsor L. J., Spolnik K. J., et al. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regen Med. 2015; 9 (11): 116-23.
Chamieh F., Collignon A. M., Coyac B. R., Lesieur J., Ribes S., Sadoine J., et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016; 9;6: 38814.
Kerkis I., Caplan A. I. Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev. 2012; 18 (2): 129-38.
Gioventù S., Andriolo G., Bonino F., Frasca S., Lazzari L., Montelatici E., et al. Novel method for banking dental pulp stem cells. Transfus Apher Sci. 2012 Oct; 47 (2): 199-206.
Kim Y. K., Kim S. G., Byeon J. H., Lee H. J., Um I. U., Lim S. C., et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109 (4): 496-503.
Lee H. S., Jeon M., Kim S. O., Kim S. H., Lee J. H., Ahn S. J., et al. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology. 2015; 71 (3): 374-83.
Huang G. T., Al-Habib M., Gauthier P. Challenges of stem cell- based pulp and dentin regeneration: A clinical perspective. Endod Topics. 2013; 28 (1): 51-60.
Itoh Y., Sasaki J. I., Hashimoto M., Katata C., Hayashi M., Imazato S. Pulp Regeneration by 3-dimensional dental pulp stem cell constructs. J Dent Res. 2018; 97 (10): 1137-43.
Nakashima M., Iohara K., Murakami M., Nakamura H., Sato Y., Ariji Y., et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017; 8 (1):61.
Zhu W., Zhu X., Huang G. T., Cheung G. S., Dissanayaka W. L., Zhang C. Regeneration of dental pulp tissue in immature teeth with apical periodontitis using platelet-rich plasma and dental pulp cells. Int Endod J. 2013; 46 (10): 962-70.
Li X., Ma C., Xie X., Sun H., Liu X. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system. Acta Biomater. 2016; 35: 57-67.
Dissanayaka W. L., Hargreaves K. M., Jin L., Samaranayake L. P., Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015; 21 (3-4): 550-63.
Piva E., Tarlé S. A., Nör J. E., Zou D., Hatfield E., Guinn T., et al. Dental pulp tissue regeneration using dental pulp stem cells isolated and expanded in human serum. J Endod. 2017; 43 (4): 568-74.
Cao Y., Song M., Kim E., Shon W., Chugal N., Bogen G., et al. Pulp-dentin regeneration: current state and future prospects. J Dent Res. 2015; 94 (11): 1544-51.
Zheng Y., Wang X. Y., Wang Y. M., Liu X. Y., Zhang C. M., Hou B. X., et al. Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res. 2012; 91 (7): 676-82.
Toledano M., Cabello I., Osorio E., Aguilera F. S., Medina C. A. L., Toledano O. M. Zn-containing polymer nanogels promote cervical dentin remineralization. Clin Oral Investig. 2018; doi:10.1007/s00784-018-2548-1
Kaneko T., Gu B., Sone P. P., Zaw S. Y. M., Murano H., Zaw Z. C. T., et al. Dental Pulp Tissue Engineering Using Mesenchymal Stem Cells: a Review with a Protocol. Stem Cell Rev. 2018; doi.org/10.1007/s12015-018-9826-9
Itoh Y., Sasaki J. I., Hashimoto M., Katata C., Hayashi M., Imazato S. Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs. J Dent Res. 2018; doi:10.1177/0022034518772260
Hernández M. B., Santiago O. E., Monroy G. A., Ledesma M. E., Mendoza N. V. M. Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: A mini-review. Int J Mol Sci. 2018; 22; 19 (4).
Menicanin D., Mrozik K. M., Wada N., Marino V., Shi S., Bartold P. M. Periodontal-ligament- derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev. 20141; 23 (9): 1001-11.
Tsumanuma Y., Iwata T., Washio K., Yoshida T., Yamada A., Takagi R., et al. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials. 2011; 32 (25): 5819-25.
Hernández M. B., Santiago O. E., Ledesma M. E., Alcauter Z. A., Mendoza N. V. M. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cellsfrom dental pulp: A case report. J Int Med Res. 2018; 46 (7): 2983-93.
Aimetti M., Ferrarotti F., Gamba M. N., Giraudi M., Romano F. Regenerative treatment of periodontal intrabony defects using autologous dental pulp stem cells: A 1-year follow-up case series. Int J Periodontics Restorative Dent. 2018; 38 (1): 51-58.
Zhang J., An Y., Gao L. N., Zhang Y. J., Jin Y., Chen F. M. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials. 2012; 33 (29): 6974-86.
Nagata M., Iwasaki K., Akazawa K., Komaki M., Yokoyama N., Izumi Y., et al. Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng Part A. 2017; 23 (9-10): 367-77.
Liu J., Wang L., Liu W., Li Q., Jin Z., Jin Y. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS One. 2014; 9 (10): 108752.
Han J., Menicanin D., Marino V., Ge S., Mrozik K., Gronthos S., et al. Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. J Periodontal Res. 2014; 49 (3): 333-45.
Kim Y. K., Lee J., Um I. W., Kim K. W., Murata M., Akazawa T., et al. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg. 2013; 39 (3): 103-11.
Stevens A., Zuliani T., Olejnik C., LeRoy H., Obriot H., Kerr-Conte J., et al. Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev. 2008; doi: 10.1089/scd.2008.0012
Kim Y. K., Kim S. G., Yun P. Y., Yeo I. S., Jin S. C., Oh J. S., et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014; 117 (1): 39-45.